Energy utilization in fluctuating biological energy converters

We have argued previously [Szoke et al., FEBS Lett. 553, 18–20 (2003); Curr. Chem. Biol. 1, 53–57 (2007)] that energy utilization and evolution are emergent properties based on a small number of established laws of physics and chemistry. The relevant laws constitute a framework for biology on a leve...

Full description

Bibliographic Details
Main Authors: Abraham Szőke, Janos Hajdu
Format: Article
Language:English
Published: AIP Publishing LLC and ACA 2016-05-01
Series:Structural Dynamics
Online Access:http://dx.doi.org/10.1063/1.4945792
Description
Summary:We have argued previously [Szoke et al., FEBS Lett. 553, 18–20 (2003); Curr. Chem. Biol. 1, 53–57 (2007)] that energy utilization and evolution are emergent properties based on a small number of established laws of physics and chemistry. The relevant laws constitute a framework for biology on a level intermediate between quantum chemistry and cell biology. There are legitimate questions whether these concepts are valid at the mesoscopic level. Such systems fluctuate appreciably, so it is not clear what their efficiency is. Advances in fluctuation theorems allow the description of such systems on a molecular level. We attempt to clarify this topic and bridge the biochemical and physical descriptions of mesoscopic systems.
ISSN:2329-7778