A Stochastic SIR Epidemic System with a Nonlinear Relapse

We investigate the conditions that control the extinction and the existence of a unique stationary distribution of a nonlinear mathematical spread model with stochastic perturbations in a population of varying size with relapse. Numerical simulations are carried out to illustrate the theoretical res...

Full description

Bibliographic Details
Main Authors: Ali El Myr, Abdelaziz Assadouq, Lahcen Omari, Adel Settati, Aadil Lahrouz
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2018/5493270
id doaj-a16375fa0b5b420eb7c8d1182ec80eed
record_format Article
spelling doaj-a16375fa0b5b420eb7c8d1182ec80eed2020-11-24T22:40:36ZengHindawi LimitedDiscrete Dynamics in Nature and Society1026-02261607-887X2018-01-01201810.1155/2018/54932705493270A Stochastic SIR Epidemic System with a Nonlinear RelapseAli El Myr0Abdelaziz Assadouq1Lahcen Omari2Adel Settati3Aadil Lahrouz4Laboratory of Computer Sciences, Modeling and Systems, Department of Mathematics, Faculty of Sciences Dhar-Mehraz, B.P. 1796 Atlas, Fez, MoroccoLaboratory of Mathematics and Applications, Department of Mathematics, Faculty of Sciences and Techniques, B.P. 416 Tanger Principale, Tanger, MoroccoLaboratory of Computer Sciences, Modeling and Systems, Department of Mathematics, Faculty of Sciences Dhar-Mehraz, B.P. 1796 Atlas, Fez, MoroccoLaboratory of Mathematics and Applications, Department of Mathematics, Faculty of Sciences and Techniques, B.P. 416 Tanger Principale, Tanger, MoroccoLaboratory of Computer Sciences, Modeling and Systems, Department of Mathematics, Faculty of Sciences Dhar-Mehraz, B.P. 1796 Atlas, Fez, MoroccoWe investigate the conditions that control the extinction and the existence of a unique stationary distribution of a nonlinear mathematical spread model with stochastic perturbations in a population of varying size with relapse. Numerical simulations are carried out to illustrate the theoretical results.http://dx.doi.org/10.1155/2018/5493270
collection DOAJ
language English
format Article
sources DOAJ
author Ali El Myr
Abdelaziz Assadouq
Lahcen Omari
Adel Settati
Aadil Lahrouz
spellingShingle Ali El Myr
Abdelaziz Assadouq
Lahcen Omari
Adel Settati
Aadil Lahrouz
A Stochastic SIR Epidemic System with a Nonlinear Relapse
Discrete Dynamics in Nature and Society
author_facet Ali El Myr
Abdelaziz Assadouq
Lahcen Omari
Adel Settati
Aadil Lahrouz
author_sort Ali El Myr
title A Stochastic SIR Epidemic System with a Nonlinear Relapse
title_short A Stochastic SIR Epidemic System with a Nonlinear Relapse
title_full A Stochastic SIR Epidemic System with a Nonlinear Relapse
title_fullStr A Stochastic SIR Epidemic System with a Nonlinear Relapse
title_full_unstemmed A Stochastic SIR Epidemic System with a Nonlinear Relapse
title_sort stochastic sir epidemic system with a nonlinear relapse
publisher Hindawi Limited
series Discrete Dynamics in Nature and Society
issn 1026-0226
1607-887X
publishDate 2018-01-01
description We investigate the conditions that control the extinction and the existence of a unique stationary distribution of a nonlinear mathematical spread model with stochastic perturbations in a population of varying size with relapse. Numerical simulations are carried out to illustrate the theoretical results.
url http://dx.doi.org/10.1155/2018/5493270
work_keys_str_mv AT alielmyr astochasticsirepidemicsystemwithanonlinearrelapse
AT abdelazizassadouq astochasticsirepidemicsystemwithanonlinearrelapse
AT lahcenomari astochasticsirepidemicsystemwithanonlinearrelapse
AT adelsettati astochasticsirepidemicsystemwithanonlinearrelapse
AT aadillahrouz astochasticsirepidemicsystemwithanonlinearrelapse
AT alielmyr stochasticsirepidemicsystemwithanonlinearrelapse
AT abdelazizassadouq stochasticsirepidemicsystemwithanonlinearrelapse
AT lahcenomari stochasticsirepidemicsystemwithanonlinearrelapse
AT adelsettati stochasticsirepidemicsystemwithanonlinearrelapse
AT aadillahrouz stochasticsirepidemicsystemwithanonlinearrelapse
_version_ 1725704324076535808