Earth remote sensing imagery classification using a multi-sensor super-resolution fusion algorithm

Earth remote sensing data fusion is intended to produce images of higher quality than the original ones. However, the fusion impact on further thematic processing remains an open question because fusion methods are mostly used to improve the visual data representation. This article addresses an issu...

Full description

Bibliographic Details
Main Authors: A.M. Belov, A.Y. Denisova
Format: Article
Language:English
Published: Samara National Research University 2020-08-01
Series:Компьютерная оптика
Subjects:
svm
rf
eap
Online Access:http://computeroptics.smr.ru/KO/PDF/KO44-4/440417.pdf
Description
Summary:Earth remote sensing data fusion is intended to produce images of higher quality than the original ones. However, the fusion impact on further thematic processing remains an open question because fusion methods are mostly used to improve the visual data representation. This article addresses an issue of the effect of fusion with increasing spatial and spectral resolution of data on thematic classification of images using various state-of-the-art classifiers and features extraction methods. In this paper, we use our own algorithm to perform multi-frame image fusion over optical remote sensing images with different spatial and spectral resolutions. For classification, we applied support vector machines and Random Forest algorithms. For features, we used spectral channels, extended attribute profiles and local feature attribute profiles. An experimental study was carried out using model images of four imaging systems. The resulting image had a spatial resolution of 2, 3, 4 and 5 times better than for the original images of each imaging system, respectively. As a result of our studies, it was revealed that for the support vector machines method, fusion was inexpedient since excessive spatial details had a negative effect on the classification. For the Random Forest algorithm, the classification results of a fused image were more accurate than for the original low-resolution images in 90% of cases. For example, for images with the smallest difference in spatial resolution (2 times) from the fusion result, the classification accuracy of the fused image was on average 4% higher. In addition, the results obtained for the Random Forest algorithm with fusion were better than the results for the support vector machines method without fusion. Additionally, it was shown that the classification accuracy of a fused image using the Random Forest method could be increased by an average of 9% due to the use of extended attribute profiles as features. Thus, when using data fusion, it is better to use the Random Forest classifier, whereas using fusion with the support vector machines method is not recommended.
ISSN:0134-2452
2412-6179