Transparent, abrasion-insensitive superhydrophobic coatings for real-world applications
Abstract Superhydrophobic surfaces and surface coatings are of high interest for many applications in everyday life including non-wetting and low-friction coatings as well as functional clothing. Manufacturing of these surfaces is intricate since superhydrophobicity requires structuring of surfaces...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Publishing Group
2017-11-01
|
Series: | Scientific Reports |
Online Access: | https://doi.org/10.1038/s41598-017-15287-8 |
id |
doaj-a1562963dbbf412cb7f52624b2b6f0ae |
---|---|
record_format |
Article |
spelling |
doaj-a1562963dbbf412cb7f52624b2b6f0ae2020-12-08T01:31:49ZengNature Publishing GroupScientific Reports2045-23222017-11-01711610.1038/s41598-017-15287-8Transparent, abrasion-insensitive superhydrophobic coatings for real-world applicationsDorothea Helmer0Nico Keller1Frederik Kotz2Friederike Stolz3Christian Greiner4Tobias M. Nargang5Kai Sachsenheimer6Bastian E. Rapp7Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1Institute for Applied Materials - Computational Materials Science (IAM-CMS), Karlsruhe Institute of Technology (KIT), Engelbert-Arnold-Str. 4Institute for Applied Materials - Computational Materials Science (IAM-CMS), Karlsruhe Institute of Technology (KIT), Engelbert-Arnold-Str. 4Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1Abstract Superhydrophobic surfaces and surface coatings are of high interest for many applications in everyday life including non-wetting and low-friction coatings as well as functional clothing. Manufacturing of these surfaces is intricate since superhydrophobicity requires structuring of surfaces on a nano- to microscale. This delicate surface structuring makes most superhydrophobic surfaces very sensitive to abrasion and renders them impractical for real-life applications. In this paper we present a transparent fluorinated polymer foam that is synthesized by a simple one-step photoinitiated radical polymerization. We term this material “Fluoropor”. It possesses an inherent nano-/microstructure throughout the whole bulk material and is thus insensitive to abrasion as its superhydrophobic properties are not merely due to a thin-layer surface-effect. Due to its foam-like structure with pore sizes below the wavelength of visible light Fluoropor appears optically transparent. We determined contact angles, surface energy, wear resistance and Vickers hardness to highlight Fluoropor’s applicability for real-word applications.https://doi.org/10.1038/s41598-017-15287-8 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Dorothea Helmer Nico Keller Frederik Kotz Friederike Stolz Christian Greiner Tobias M. Nargang Kai Sachsenheimer Bastian E. Rapp |
spellingShingle |
Dorothea Helmer Nico Keller Frederik Kotz Friederike Stolz Christian Greiner Tobias M. Nargang Kai Sachsenheimer Bastian E. Rapp Transparent, abrasion-insensitive superhydrophobic coatings for real-world applications Scientific Reports |
author_facet |
Dorothea Helmer Nico Keller Frederik Kotz Friederike Stolz Christian Greiner Tobias M. Nargang Kai Sachsenheimer Bastian E. Rapp |
author_sort |
Dorothea Helmer |
title |
Transparent, abrasion-insensitive superhydrophobic coatings for real-world applications |
title_short |
Transparent, abrasion-insensitive superhydrophobic coatings for real-world applications |
title_full |
Transparent, abrasion-insensitive superhydrophobic coatings for real-world applications |
title_fullStr |
Transparent, abrasion-insensitive superhydrophobic coatings for real-world applications |
title_full_unstemmed |
Transparent, abrasion-insensitive superhydrophobic coatings for real-world applications |
title_sort |
transparent, abrasion-insensitive superhydrophobic coatings for real-world applications |
publisher |
Nature Publishing Group |
series |
Scientific Reports |
issn |
2045-2322 |
publishDate |
2017-11-01 |
description |
Abstract Superhydrophobic surfaces and surface coatings are of high interest for many applications in everyday life including non-wetting and low-friction coatings as well as functional clothing. Manufacturing of these surfaces is intricate since superhydrophobicity requires structuring of surfaces on a nano- to microscale. This delicate surface structuring makes most superhydrophobic surfaces very sensitive to abrasion and renders them impractical for real-life applications. In this paper we present a transparent fluorinated polymer foam that is synthesized by a simple one-step photoinitiated radical polymerization. We term this material “Fluoropor”. It possesses an inherent nano-/microstructure throughout the whole bulk material and is thus insensitive to abrasion as its superhydrophobic properties are not merely due to a thin-layer surface-effect. Due to its foam-like structure with pore sizes below the wavelength of visible light Fluoropor appears optically transparent. We determined contact angles, surface energy, wear resistance and Vickers hardness to highlight Fluoropor’s applicability for real-word applications. |
url |
https://doi.org/10.1038/s41598-017-15287-8 |
work_keys_str_mv |
AT dorotheahelmer transparentabrasioninsensitivesuperhydrophobiccoatingsforrealworldapplications AT nicokeller transparentabrasioninsensitivesuperhydrophobiccoatingsforrealworldapplications AT frederikkotz transparentabrasioninsensitivesuperhydrophobiccoatingsforrealworldapplications AT friederikestolz transparentabrasioninsensitivesuperhydrophobiccoatingsforrealworldapplications AT christiangreiner transparentabrasioninsensitivesuperhydrophobiccoatingsforrealworldapplications AT tobiasmnargang transparentabrasioninsensitivesuperhydrophobiccoatingsforrealworldapplications AT kaisachsenheimer transparentabrasioninsensitivesuperhydrophobiccoatingsforrealworldapplications AT bastianerapp transparentabrasioninsensitivesuperhydrophobiccoatingsforrealworldapplications |
_version_ |
1724394811312570368 |