Dye removal from artificial wastewater using heterogeneous bio-fenton system

In the present study, GOx/MnFe2O4/calcium alginate nano-composite was prepared by the trapping enzyme/nanoparticles in calcium alginate. The prepared absorbent was applied for decolorization of artificial dye wastewater of acid red 14 (AR14) by heterogeneous bio-Fenton system. Kinetic and isotherm s...

Full description

Bibliographic Details
Main Authors: Shojaat Rahim, Karimi Afzal, Saadatjoo Naghi, Aber Soheil
Format: Article
Language:English
Published: Association of the Chemical Engineers of Serbia 2017-01-01
Series:Chemical Industry and Chemical Engineering Quarterly
Subjects:
Online Access:http://www.doiserbia.nb.rs/img/doi/1451-9372/2017/1451-93721600058S.pdf
Description
Summary:In the present study, GOx/MnFe2O4/calcium alginate nano-composite was prepared by the trapping enzyme/nanoparticles in calcium alginate. The prepared absorbent was applied for decolorization of artificial dye wastewater of acid red 14 (AR14) by heterogeneous bio-Fenton system. Kinetic and isotherm studies were carried out. The decolorization of acid red 14 followed the Michaelis- Menten, pseudo-first order and pseudo-second order kinetic models. Good correlation coefficients were obtained by fitting the experimental data to Michaelis- Menten and pseudo-second order kinetic models. The adsorption isotherms were described by Langmuir, Freundlich and Temkin isotherms. Among the three isotherm models, the Freundlich model was fitted with the equilibrium data obtained from adsorption of AR14 onto MnFe2O4/calcium alginate; while Temkin isotherm gave the best correlation for adsorption on MnFe2O4 nanoparticles. The effect of various parameters such as initial pH of solution, initial dye concentration, and contact time on the adsorption of AR14 on MnFe2O4 and MnFe2O4/ /calcium alginate as well as dye enzymatic decomposition was studied. The decolorization of AR14 with initial concentration of 10 mg.L−1 by using GOx/ /MnFe2O4/calcium alginate was 60.17%.
ISSN:1451-9372
2217-7434