Summary: | Compaction behaviour and mechanical response of a compact show strong dependence on particle shape. In this study, a numerical model based on the discrete element method (DEM) was developed to study the compaction behaviour of spheroidal particles. In the model, particle shape was approximated by gluing multiple spheres together. A bonded particle model was adopted to describe interparticle bonding force. The DEM model was first validated by comparing the properties of packing of spheroids (packing density, coordination number) with literature data and then applied to both die compaction and unconfined compression. In die compaction, the effect of aspect ratio on the densification was mainly due to the difference in the initial packing. In unconfined compression, the increase in compressive strength with increasing aspect ratio was attributed to the increase in the number of interparticle bonding. The findings facilitate a better understanding of the relation of particle shape to the compaction behaviour and compact strength.
|