Summary: | Albumin-bound long-chain fatty acid methyl esters (ME) were taken up and utilized by Ehrlich ascites tumor cells and slices of rat heart, liver, and kidney. Much more ME than albumin was taken up by the tumor cells, indicating that ME dissociated from the carrier protein during their uptake. 70–80% of the radioactivity associated with the cells after 1 min of incubation at 37°C remained as ME. The results of studies with metabolic inhibitors and glucose suggest that uptake of ME is an energy-independent process. Changes in incubation medium pH between 7.8 and 6.5 did not markedly alter uptake of ME. Cells incubated with FFA and methanol did not synthesize ME. These findings indicate that ME are taken up intact, and they suggest that the presence of an anionic carboxyl group is not essential for the binding of a long-chain aliphatic hydrocarbon to a mammalian cell.When incubation with labeled ME was continued for 1 hr, increasing amounts of radioactivity were recovered in FFA, phospholipids, neutral lipid esters, and CO2. ME radioactivity associated with the cells after a brief initial incubation was released in the form of ME and FFA when the cells were incubated subsequently in a medium containing albumin. If the second incubation medium contained no albumin, most of the ME radioactivity initially associated with the cells was incorporated into phospholipids, neutral lipid esters, and CO2. These results suggest that much of the ME which is taken up, is hydrolyzed to FFA, and that the fatty acids derived from ME are available for further metabolism.
|