On some extensions of the A-model

The A-model for finite rank singular perturbations of class \(\mathfrak{H}_{-m-2}\setminus\mathfrak{H}_{-m-1}\), \(m \in \mathbb{N}\), is considered from the perspective of boundary relations. Assuming further that the Hilbert spaces \((\mathfrak{H}_n)_{n\in\mathbb{Z}}\) admit an orthogonal decompos...

Full description

Bibliographic Details
Main Author: Rytis Juršėnas
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2020-10-01
Series:Opuscula Mathematica
Subjects:
Online Access:https://www.opuscula.agh.edu.pl/vol40/5/art/opuscula_math_4032.pdf
id doaj-a13b59b2d1c24275916cf6be980a22d7
record_format Article
spelling doaj-a13b59b2d1c24275916cf6be980a22d72021-02-08T18:34:07ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742020-10-01405569597https://doi.org/10.7494/OpMath.2020.40.5.5694032On some extensions of the A-modelRytis Juršėnas0https://orcid.org/0000-0003-0788-5123Vilnius University, Institute of Theoretical Physics and Astronomy, Saulėtekio Ave. 3, LT-10257 Vilnius, LithuaniaThe A-model for finite rank singular perturbations of class \(\mathfrak{H}_{-m-2}\setminus\mathfrak{H}_{-m-1}\), \(m \in \mathbb{N}\), is considered from the perspective of boundary relations. Assuming further that the Hilbert spaces \((\mathfrak{H}_n)_{n\in\mathbb{Z}}\) admit an orthogonal decomposition \(\mathfrak{H}^-_n \oplus \mathfrak{H}^+_n\), with the corresponding projections satisfying \(P^{\pm}_{n+1}\subseteq P^{\pm}_n\), nontrivial extensions in the A-model are constructed for the symmetric restrictions in the subspaces.https://www.opuscula.agh.edu.pl/vol40/5/art/opuscula_math_4032.pdffinite rank higher order singular perturbationcascade (a) modelpeak modelhilbert spacescale of hilbert spacespontryagin spaceordinary boundary triplekrein \(q\)-functionweyl functiongamma fieldsymmetric operatorproper extensionresolvent
collection DOAJ
language English
format Article
sources DOAJ
author Rytis Juršėnas
spellingShingle Rytis Juršėnas
On some extensions of the A-model
Opuscula Mathematica
finite rank higher order singular perturbation
cascade (a) model
peak model
hilbert space
scale of hilbert spaces
pontryagin space
ordinary boundary triple
krein \(q\)-function
weyl function
gamma field
symmetric operator
proper extension
resolvent
author_facet Rytis Juršėnas
author_sort Rytis Juršėnas
title On some extensions of the A-model
title_short On some extensions of the A-model
title_full On some extensions of the A-model
title_fullStr On some extensions of the A-model
title_full_unstemmed On some extensions of the A-model
title_sort on some extensions of the a-model
publisher AGH Univeristy of Science and Technology Press
series Opuscula Mathematica
issn 1232-9274
publishDate 2020-10-01
description The A-model for finite rank singular perturbations of class \(\mathfrak{H}_{-m-2}\setminus\mathfrak{H}_{-m-1}\), \(m \in \mathbb{N}\), is considered from the perspective of boundary relations. Assuming further that the Hilbert spaces \((\mathfrak{H}_n)_{n\in\mathbb{Z}}\) admit an orthogonal decomposition \(\mathfrak{H}^-_n \oplus \mathfrak{H}^+_n\), with the corresponding projections satisfying \(P^{\pm}_{n+1}\subseteq P^{\pm}_n\), nontrivial extensions in the A-model are constructed for the symmetric restrictions in the subspaces.
topic finite rank higher order singular perturbation
cascade (a) model
peak model
hilbert space
scale of hilbert spaces
pontryagin space
ordinary boundary triple
krein \(q\)-function
weyl function
gamma field
symmetric operator
proper extension
resolvent
url https://www.opuscula.agh.edu.pl/vol40/5/art/opuscula_math_4032.pdf
work_keys_str_mv AT rytisjursenas onsomeextensionsoftheamodel
_version_ 1724279714136195072