On some extensions of the A-model
The A-model for finite rank singular perturbations of class \(\mathfrak{H}_{-m-2}\setminus\mathfrak{H}_{-m-1}\), \(m \in \mathbb{N}\), is considered from the perspective of boundary relations. Assuming further that the Hilbert spaces \((\mathfrak{H}_n)_{n\in\mathbb{Z}}\) admit an orthogonal decompos...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2020-10-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | https://www.opuscula.agh.edu.pl/vol40/5/art/opuscula_math_4032.pdf |
id |
doaj-a13b59b2d1c24275916cf6be980a22d7 |
---|---|
record_format |
Article |
spelling |
doaj-a13b59b2d1c24275916cf6be980a22d72021-02-08T18:34:07ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742020-10-01405569597https://doi.org/10.7494/OpMath.2020.40.5.5694032On some extensions of the A-modelRytis Juršėnas0https://orcid.org/0000-0003-0788-5123Vilnius University, Institute of Theoretical Physics and Astronomy, Saulėtekio Ave. 3, LT-10257 Vilnius, LithuaniaThe A-model for finite rank singular perturbations of class \(\mathfrak{H}_{-m-2}\setminus\mathfrak{H}_{-m-1}\), \(m \in \mathbb{N}\), is considered from the perspective of boundary relations. Assuming further that the Hilbert spaces \((\mathfrak{H}_n)_{n\in\mathbb{Z}}\) admit an orthogonal decomposition \(\mathfrak{H}^-_n \oplus \mathfrak{H}^+_n\), with the corresponding projections satisfying \(P^{\pm}_{n+1}\subseteq P^{\pm}_n\), nontrivial extensions in the A-model are constructed for the symmetric restrictions in the subspaces.https://www.opuscula.agh.edu.pl/vol40/5/art/opuscula_math_4032.pdffinite rank higher order singular perturbationcascade (a) modelpeak modelhilbert spacescale of hilbert spacespontryagin spaceordinary boundary triplekrein \(q\)-functionweyl functiongamma fieldsymmetric operatorproper extensionresolvent |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Rytis Juršėnas |
spellingShingle |
Rytis Juršėnas On some extensions of the A-model Opuscula Mathematica finite rank higher order singular perturbation cascade (a) model peak model hilbert space scale of hilbert spaces pontryagin space ordinary boundary triple krein \(q\)-function weyl function gamma field symmetric operator proper extension resolvent |
author_facet |
Rytis Juršėnas |
author_sort |
Rytis Juršėnas |
title |
On some extensions of the A-model |
title_short |
On some extensions of the A-model |
title_full |
On some extensions of the A-model |
title_fullStr |
On some extensions of the A-model |
title_full_unstemmed |
On some extensions of the A-model |
title_sort |
on some extensions of the a-model |
publisher |
AGH Univeristy of Science and Technology Press |
series |
Opuscula Mathematica |
issn |
1232-9274 |
publishDate |
2020-10-01 |
description |
The A-model for finite rank singular perturbations of class \(\mathfrak{H}_{-m-2}\setminus\mathfrak{H}_{-m-1}\), \(m \in \mathbb{N}\), is considered from the perspective of boundary relations. Assuming further that the Hilbert spaces \((\mathfrak{H}_n)_{n\in\mathbb{Z}}\) admit an orthogonal decomposition \(\mathfrak{H}^-_n \oplus \mathfrak{H}^+_n\), with the corresponding projections satisfying \(P^{\pm}_{n+1}\subseteq P^{\pm}_n\), nontrivial extensions in the A-model are constructed for the symmetric restrictions in the subspaces. |
topic |
finite rank higher order singular perturbation cascade (a) model peak model hilbert space scale of hilbert spaces pontryagin space ordinary boundary triple krein \(q\)-function weyl function gamma field symmetric operator proper extension resolvent |
url |
https://www.opuscula.agh.edu.pl/vol40/5/art/opuscula_math_4032.pdf |
work_keys_str_mv |
AT rytisjursenas onsomeextensionsoftheamodel |
_version_ |
1724279714136195072 |