Exponential dichotomy for evolution families on the real line
<p>We give necessary and sufficient conditions for uniform exponential dichotomy of evolution families in terms of the admissibility of the pair <mml:math> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> &...
Format: | Article |
---|---|
Language: | English |
Published: |
Hindawi Limited
2006-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/31641 |
id |
doaj-a12caa60d5114c89a50db6b8a94abf6f |
---|---|
record_format |
Article |
spelling |
doaj-a12caa60d5114c89a50db6b8a94abf6f2020-11-24T22:19:43ZengHindawi LimitedAbstract and Applied Analysis1085-33752006-01-012006Exponential dichotomy for evolution families on the real line<p>We give necessary and sufficient conditions for uniform exponential dichotomy of evolution families in terms of the admissibility of the pair <mml:math> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>ℝ</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>ℝ</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:math>. We show that the admissibility of the pair <mml:math> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>ℝ</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>ℝ</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:math> is equivalent to the uniform exponential dichotomy of an evolution family if and only if <mml:math> <mml:mi>p</mml:mi><mml:mo>≥</mml:mo><mml:mi>q</mml:mi> </mml:math>. As applications we obtain characterizations for uniform exponential dichotomy of semigroups.</p>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/31641 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
title |
Exponential dichotomy for evolution families on the real line |
spellingShingle |
Exponential dichotomy for evolution families on the real line Abstract and Applied Analysis |
title_short |
Exponential dichotomy for evolution families on the real line |
title_full |
Exponential dichotomy for evolution families on the real line |
title_fullStr |
Exponential dichotomy for evolution families on the real line |
title_full_unstemmed |
Exponential dichotomy for evolution families on the real line |
title_sort |
exponential dichotomy for evolution families on the real line |
publisher |
Hindawi Limited |
series |
Abstract and Applied Analysis |
issn |
1085-3375 |
publishDate |
2006-01-01 |
description |
<p>We give necessary and sufficient conditions for uniform exponential dichotomy of evolution families in terms of the admissibility of the pair <mml:math> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>ℝ</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>ℝ</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:math>. We show that the admissibility of the pair <mml:math> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>ℝ</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>ℝ</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:math> is equivalent to the uniform exponential dichotomy of an evolution family if and only if <mml:math> <mml:mi>p</mml:mi><mml:mo>≥</mml:mo><mml:mi>q</mml:mi> </mml:math>. As applications we obtain characterizations for uniform exponential dichotomy of semigroups.</p> |
url |
http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/31641 |
_version_ |
1725777834286252032 |