Exponential dichotomy for evolution families on the real line

<p>We give necessary and sufficient conditions for uniform exponential dichotomy of evolution families in terms of the admissibility of the pair <mml:math> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> &...

Full description

Bibliographic Details
Format: Article
Language:English
Published: Hindawi Limited 2006-01-01
Series:Abstract and Applied Analysis
Online Access:http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/31641
id doaj-a12caa60d5114c89a50db6b8a94abf6f
record_format Article
spelling doaj-a12caa60d5114c89a50db6b8a94abf6f2020-11-24T22:19:43ZengHindawi LimitedAbstract and Applied Analysis1085-33752006-01-012006Exponential dichotomy for evolution families on the real line<p>We give necessary and sufficient conditions for uniform exponential dichotomy of evolution families in terms of the admissibility of the pair <mml:math> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>&#x211D;</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>&#x211D;</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:math>. We show that the admissibility of the pair <mml:math> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>&#x211D;</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>&#x211D;</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:math> is equivalent to the uniform exponential dichotomy of an evolution family if and only if <mml:math> <mml:mi>p</mml:mi><mml:mo>&#x2265;</mml:mo><mml:mi>q</mml:mi> </mml:math>. As applications we obtain characterizations for uniform exponential dichotomy of semigroups.</p>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/31641
collection DOAJ
language English
format Article
sources DOAJ
title Exponential dichotomy for evolution families on the real line
spellingShingle Exponential dichotomy for evolution families on the real line
Abstract and Applied Analysis
title_short Exponential dichotomy for evolution families on the real line
title_full Exponential dichotomy for evolution families on the real line
title_fullStr Exponential dichotomy for evolution families on the real line
title_full_unstemmed Exponential dichotomy for evolution families on the real line
title_sort exponential dichotomy for evolution families on the real line
publisher Hindawi Limited
series Abstract and Applied Analysis
issn 1085-3375
publishDate 2006-01-01
description <p>We give necessary and sufficient conditions for uniform exponential dichotomy of evolution families in terms of the admissibility of the pair <mml:math> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>&#x211D;</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>&#x211D;</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:math>. We show that the admissibility of the pair <mml:math> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>&#x211D;</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow><mml:mo>,</mml:mo><mml:msup> <mml:mi>L</mml:mi> <mml:mi>q</mml:mi> </mml:msup> <mml:mrow><mml:mo>(</mml:mo> <mml:mrow> <mml:mi>&#x211D;</mml:mi><mml:mo>,</mml:mo><mml:mi>X</mml:mi> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:mrow> <mml:mo>)</mml:mo></mml:mrow> </mml:math> is equivalent to the uniform exponential dichotomy of an evolution family if and only if <mml:math> <mml:mi>p</mml:mi><mml:mo>&#x2265;</mml:mo><mml:mi>q</mml:mi> </mml:math>. As applications we obtain characterizations for uniform exponential dichotomy of semigroups.</p>
url http://www.hindawi.com/GetArticle.aspx?doi=10.1155/AAA/2006/31641
_version_ 1725777834286252032