Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameter

We study the asymptotic behavior of mixed functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}d\xi _{T}(s)$, $t\ge 0$, as $T\to \infty $. Here $\xi _{T}(t)$ is a strong solution of the stochastic differential equation $d\xi _{T}(t)=a_{T}(\xi _{T}(t)...

Full description

Bibliographic Details
Main Authors: Grigorij Kulinich, Svitlana Kushnirenko, Yuliia Mishura
Format: Article
Language:English
Published: VTeX 2016-07-01
Series:Modern Stochastics: Theory and Applications
Subjects:
Online Access:https://vmsta.vtex.vmt/doi/10.15559/16-VMSTA58
id doaj-a1068083e55c443c94b96ec6d872500f
record_format Article
spelling doaj-a1068083e55c443c94b96ec6d872500f2020-11-24T21:11:15ZengVTeXModern Stochastics: Theory and Applications2351-60462351-60542016-07-013219120810.15559/16-VMSTA58Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameterGrigorij Kulinich0Svitlana Kushnirenko1Yuliia Mishura2Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601, Kyiv, UkraineTaras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601, Kyiv, UkraineTaras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601, Kyiv, UkraineWe study the asymptotic behavior of mixed functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}d\xi _{T}(s)$, $t\ge 0$, as $T\to \infty $. Here $\xi _{T}(t)$ is a strong solution of the stochastic differential equation $d\xi _{T}(t)=a_{T}(\xi _{T}(t))\hspace{0.1667em}dt+dW_{T}(t)$, $T>0$ is a parameter, $a_{T}=a_{T}(x)$ are measurable functions such that $\left|a_{T}(x)\right|\le C_{T}$ for all $x\in \mathbb{R}$, $W_{T}(t)$ are standard Wiener processes, $F_{T}=F_{T}(x)$, $x\in \mathbb{R}$, are continuous functions, $g_{T}=g_{T}(x)$, $x\in \mathbb{R}$, are locally bounded functions, and everything is real-valued. The explicit form of the limiting processes for $I_{T}(t)$ is established under very nonregular dependence of $g_{T}$ and $a_{T}$ on the parameter T.https://vmsta.vtex.vmt/doi/10.15559/16-VMSTA58Diffusion-type processesasymptotic behavior of additive functionalsnonregular dependence on the parameter
collection DOAJ
language English
format Article
sources DOAJ
author Grigorij Kulinich
Svitlana Kushnirenko
Yuliia Mishura
spellingShingle Grigorij Kulinich
Svitlana Kushnirenko
Yuliia Mishura
Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameter
Modern Stochastics: Theory and Applications
Diffusion-type processes
asymptotic behavior of additive functionals
nonregular dependence on the parameter
author_facet Grigorij Kulinich
Svitlana Kushnirenko
Yuliia Mishura
author_sort Grigorij Kulinich
title Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameter
title_short Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameter
title_full Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameter
title_fullStr Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameter
title_full_unstemmed Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameter
title_sort asymptotic behavior of homogeneous additive functionals of the solutions of itô stochastic differential equations with nonregular dependence on parameter
publisher VTeX
series Modern Stochastics: Theory and Applications
issn 2351-6046
2351-6054
publishDate 2016-07-01
description We study the asymptotic behavior of mixed functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}d\xi _{T}(s)$, $t\ge 0$, as $T\to \infty $. Here $\xi _{T}(t)$ is a strong solution of the stochastic differential equation $d\xi _{T}(t)=a_{T}(\xi _{T}(t))\hspace{0.1667em}dt+dW_{T}(t)$, $T>0$ is a parameter, $a_{T}=a_{T}(x)$ are measurable functions such that $\left|a_{T}(x)\right|\le C_{T}$ for all $x\in \mathbb{R}$, $W_{T}(t)$ are standard Wiener processes, $F_{T}=F_{T}(x)$, $x\in \mathbb{R}$, are continuous functions, $g_{T}=g_{T}(x)$, $x\in \mathbb{R}$, are locally bounded functions, and everything is real-valued. The explicit form of the limiting processes for $I_{T}(t)$ is established under very nonregular dependence of $g_{T}$ and $a_{T}$ on the parameter T.
topic Diffusion-type processes
asymptotic behavior of additive functionals
nonregular dependence on the parameter
url https://vmsta.vtex.vmt/doi/10.15559/16-VMSTA58
work_keys_str_mv AT grigorijkulinich asymptoticbehaviorofhomogeneousadditivefunctionalsofthesolutionsofitostochasticdifferentialequationswithnonregulardependenceonparameter
AT svitlanakushnirenko asymptoticbehaviorofhomogeneousadditivefunctionalsofthesolutionsofitostochasticdifferentialequationswithnonregulardependenceonparameter
AT yuliiamishura asymptoticbehaviorofhomogeneousadditivefunctionalsofthesolutionsofitostochasticdifferentialequationswithnonregulardependenceonparameter
_version_ 1716753989039554560