Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameter
We study the asymptotic behavior of mixed functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}d\xi _{T}(s)$, $t\ge 0$, as $T\to \infty $. Here $\xi _{T}(t)$ is a strong solution of the stochastic differential equation $d\xi _{T}(t)=a_{T}(\xi _{T}(t)...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
VTeX
2016-07-01
|
Series: | Modern Stochastics: Theory and Applications |
Subjects: | |
Online Access: | https://vmsta.vtex.vmt/doi/10.15559/16-VMSTA58 |
id |
doaj-a1068083e55c443c94b96ec6d872500f |
---|---|
record_format |
Article |
spelling |
doaj-a1068083e55c443c94b96ec6d872500f2020-11-24T21:11:15ZengVTeXModern Stochastics: Theory and Applications2351-60462351-60542016-07-013219120810.15559/16-VMSTA58Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameterGrigorij Kulinich0Svitlana Kushnirenko1Yuliia Mishura2Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601, Kyiv, UkraineTaras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601, Kyiv, UkraineTaras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601, Kyiv, UkraineWe study the asymptotic behavior of mixed functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}d\xi _{T}(s)$, $t\ge 0$, as $T\to \infty $. Here $\xi _{T}(t)$ is a strong solution of the stochastic differential equation $d\xi _{T}(t)=a_{T}(\xi _{T}(t))\hspace{0.1667em}dt+dW_{T}(t)$, $T>0$ is a parameter, $a_{T}=a_{T}(x)$ are measurable functions such that $\left|a_{T}(x)\right|\le C_{T}$ for all $x\in \mathbb{R}$, $W_{T}(t)$ are standard Wiener processes, $F_{T}=F_{T}(x)$, $x\in \mathbb{R}$, are continuous functions, $g_{T}=g_{T}(x)$, $x\in \mathbb{R}$, are locally bounded functions, and everything is real-valued. The explicit form of the limiting processes for $I_{T}(t)$ is established under very nonregular dependence of $g_{T}$ and $a_{T}$ on the parameter T.https://vmsta.vtex.vmt/doi/10.15559/16-VMSTA58Diffusion-type processesasymptotic behavior of additive functionalsnonregular dependence on the parameter |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Grigorij Kulinich Svitlana Kushnirenko Yuliia Mishura |
spellingShingle |
Grigorij Kulinich Svitlana Kushnirenko Yuliia Mishura Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameter Modern Stochastics: Theory and Applications Diffusion-type processes asymptotic behavior of additive functionals nonregular dependence on the parameter |
author_facet |
Grigorij Kulinich Svitlana Kushnirenko Yuliia Mishura |
author_sort |
Grigorij Kulinich |
title |
Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameter |
title_short |
Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameter |
title_full |
Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameter |
title_fullStr |
Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameter |
title_full_unstemmed |
Asymptotic behavior of homogeneous additive functionals of the solutions of Itô stochastic differential equations with nonregular dependence on parameter |
title_sort |
asymptotic behavior of homogeneous additive functionals of the solutions of itô stochastic differential equations with nonregular dependence on parameter |
publisher |
VTeX |
series |
Modern Stochastics: Theory and Applications |
issn |
2351-6046 2351-6054 |
publishDate |
2016-07-01 |
description |
We study the asymptotic behavior of mixed functionals of the form $I_{T}(t)=F_{T}(\xi _{T}(t))+{\int _{0}^{t}}g_{T}(\xi _{T}(s))\hspace{0.1667em}d\xi _{T}(s)$, $t\ge 0$, as $T\to \infty $. Here $\xi _{T}(t)$ is a strong solution of the stochastic differential equation $d\xi _{T}(t)=a_{T}(\xi _{T}(t))\hspace{0.1667em}dt+dW_{T}(t)$, $T>0$ is a parameter, $a_{T}=a_{T}(x)$ are measurable functions such that $\left|a_{T}(x)\right|\le C_{T}$ for all $x\in \mathbb{R}$, $W_{T}(t)$ are standard Wiener processes, $F_{T}=F_{T}(x)$, $x\in \mathbb{R}$, are continuous functions, $g_{T}=g_{T}(x)$, $x\in \mathbb{R}$, are locally bounded functions, and everything is real-valued. The explicit form of the limiting processes for $I_{T}(t)$ is established under very nonregular dependence of $g_{T}$ and $a_{T}$ on the parameter T. |
topic |
Diffusion-type processes asymptotic behavior of additive functionals nonregular dependence on the parameter |
url |
https://vmsta.vtex.vmt/doi/10.15559/16-VMSTA58 |
work_keys_str_mv |
AT grigorijkulinich asymptoticbehaviorofhomogeneousadditivefunctionalsofthesolutionsofitostochasticdifferentialequationswithnonregulardependenceonparameter AT svitlanakushnirenko asymptoticbehaviorofhomogeneousadditivefunctionalsofthesolutionsofitostochasticdifferentialequationswithnonregulardependenceonparameter AT yuliiamishura asymptoticbehaviorofhomogeneousadditivefunctionalsofthesolutionsofitostochasticdifferentialequationswithnonregulardependenceonparameter |
_version_ |
1716753989039554560 |