Summary: | Quokkas (Setonix brachyurus) are small macropodid marsupials from Western Australia, which are identified as of conservation concern. Studies on their blood analytes exist but involve small sample sizes and are associated with very little information concerning the health of the animals. Blood was collected from free-ranging quokkas from Rottnest Island (n = 113) and mainland (n = 37) Western Australia, between September 2010 and December 2011, to establish haematology and blood chemistry reference intervals. Differences in haematology and blood chemistry between sites (Rottnest Island v mainland) were significant for haematology (HMT, p = 0.003), blood chemistry (BLC, p = 0.001) and peripheral blood cell morphology (PBCM, p = 0.001). Except for alkaline phosphatase, all blood chemistry analytes were higher in mainland animals. There were also differences with time of year in HMT (p = 0.001), BLC (p = 0.001) and PBCM (p = 0.001) for Rottnest Island quokkas. A small sample of captive animals (n = 8) were opportunistically sampled for plasma concentrations of vitamin E and were found to be deficient compared with wild-caught animals. Fifty-eight of the 150 quokkas were also tested for the presence of Salmonella, microfilariae, Macropodid herpesvirus-6, Theileria spp., Babesia spp., trypanosomes, Cryptococcus spp. and other saprophytic fungi. All eight infectious agents were detected in this study. Infectious agents were detected in 24 of these 58 quokkas (41%), with more than one infectious agent detected for all 24 individuals. Salmonella were detected concurrently with microfilariae in 8 of these 24 quokkas, and this mixed infection was associated with lower values across all haematological analytes, with Salmonella having the greater involvement in the decreased haematological values (p < 0.05). There was no evidence for an effect of sex on HMT, BLC and PBCM. Our data provide important haematological and blood chemistry reference intervals for free-ranging quokkas. We applied novel methods of analyses to HMT and BLC that can be used more broadly, aiding identification of potential disease in wildlife.
|