Quasi-pseudometric properties of the Nikodym-Saks space
For a non-negative finite countably additive measure μ defined on the σ-field Σ of subsets of Ω, it is well known that a certain quotient of Σ can be turned into a complete metric space Σ (Ω), known as the Nikodym-Saks space, which yields such important results in Measure Theory and Functional Analy...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitat Politècnica de València
2003-10-01
|
Series: | Applied General Topology |
Subjects: | |
Online Access: | http://polipapers.upv.es/index.php/AGT/article/view/2029 |
Summary: | For a non-negative finite countably additive measure μ defined on the σ-field Σ of subsets of Ω, it is well known that a certain quotient of Σ can be turned into a complete metric space Σ (Ω), known as the Nikodym-Saks space, which yields such important results in Measure Theory and Functional Analysis as Vitali-Hahn-Saks and Nikodym's theorems. Here we study some topological properties of Σ (Ω) regarded as a quasi-pseudometric space. |
---|---|
ISSN: | 1576-9402 1989-4147 |