Performance Optimizations of the Transcritical CO<sub>2</sub> Two-Stage Compression Refrigeration System and Influences of the Auxiliary Gas Cooler

To optimize the performance of the transcritical CO<sub>2</sub> two-stage compression refrigeration system, the energy analysis and the exergy analysis are conducted. It is found that higher COP, lower compression power, and less exergy destruction can be achieved when the auxiliary gas...

Full description

Bibliographic Details
Main Authors: Yuyao Sun, Jinfeng Wang, Jing Xie
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/14/17/5578
id doaj-a07a68008d7845038df83a08fbbd4a56
record_format Article
spelling doaj-a07a68008d7845038df83a08fbbd4a562021-09-09T13:44:05ZengMDPI AGEnergies1996-10732021-09-01145578557810.3390/en14175578Performance Optimizations of the Transcritical CO<sub>2</sub> Two-Stage Compression Refrigeration System and Influences of the Auxiliary Gas CoolerYuyao Sun0Jinfeng Wang1Jing Xie2College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, ChinaCollege of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, ChinaCollege of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, ChinaTo optimize the performance of the transcritical CO<sub>2</sub> two-stage compression refrigeration system, the energy analysis and the exergy analysis are conducted. It is found that higher COP, lower compression power, and less exergy destruction can be achieved when the auxiliary gas cooler is applied. Moreover, the discharge temperature of the compound compressor (HPS) can be reduced by decreasing the temperature at the outlet of the auxiliary gas cooler (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>a</mi><mi>g</mi><mi>c</mi><mo>,</mo><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>. When the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>a</mi><mi>g</mi><mi>c</mi><mo>,</mo><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> is reduced from 30 to 12 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>, the discharge temperature of the compound compressor (HPS) can be decreased by 13.83 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>. Furthermore, the COP and the exergy efficiency can be raised by enhancing the intermediate pressure. Based on these results, the optimizations of system design and system operation are put forward. The application of the auxiliary gas cooler can improve the performance of the transcritical CO<sub>2</sub> two-stage compression refrigeration system. Operators can decrease the discharge temperature of the compound compressor (HPS) by reducing the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>a</mi><mi>g</mi><mi>c</mi><mo>,</mo><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>, and increase the COP and the exergy efficiency by enhancing the intermediate pressure.https://www.mdpi.com/1996-1073/14/17/5578energy analysisexergy analysiscoefficient of performanceexergy efficiencyauxiliary gas coolerintermediate pressure
collection DOAJ
language English
format Article
sources DOAJ
author Yuyao Sun
Jinfeng Wang
Jing Xie
spellingShingle Yuyao Sun
Jinfeng Wang
Jing Xie
Performance Optimizations of the Transcritical CO<sub>2</sub> Two-Stage Compression Refrigeration System and Influences of the Auxiliary Gas Cooler
Energies
energy analysis
exergy analysis
coefficient of performance
exergy efficiency
auxiliary gas cooler
intermediate pressure
author_facet Yuyao Sun
Jinfeng Wang
Jing Xie
author_sort Yuyao Sun
title Performance Optimizations of the Transcritical CO<sub>2</sub> Two-Stage Compression Refrigeration System and Influences of the Auxiliary Gas Cooler
title_short Performance Optimizations of the Transcritical CO<sub>2</sub> Two-Stage Compression Refrigeration System and Influences of the Auxiliary Gas Cooler
title_full Performance Optimizations of the Transcritical CO<sub>2</sub> Two-Stage Compression Refrigeration System and Influences of the Auxiliary Gas Cooler
title_fullStr Performance Optimizations of the Transcritical CO<sub>2</sub> Two-Stage Compression Refrigeration System and Influences of the Auxiliary Gas Cooler
title_full_unstemmed Performance Optimizations of the Transcritical CO<sub>2</sub> Two-Stage Compression Refrigeration System and Influences of the Auxiliary Gas Cooler
title_sort performance optimizations of the transcritical co<sub>2</sub> two-stage compression refrigeration system and influences of the auxiliary gas cooler
publisher MDPI AG
series Energies
issn 1996-1073
publishDate 2021-09-01
description To optimize the performance of the transcritical CO<sub>2</sub> two-stage compression refrigeration system, the energy analysis and the exergy analysis are conducted. It is found that higher COP, lower compression power, and less exergy destruction can be achieved when the auxiliary gas cooler is applied. Moreover, the discharge temperature of the compound compressor (HPS) can be reduced by decreasing the temperature at the outlet of the auxiliary gas cooler (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>a</mi><mi>g</mi><mi>c</mi><mo>,</mo><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula>. When the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>a</mi><mi>g</mi><mi>c</mi><mo>,</mo><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula> is reduced from 30 to 12 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>, the discharge temperature of the compound compressor (HPS) can be decreased by 13.83 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>°</mo><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>. Furthermore, the COP and the exergy efficiency can be raised by enhancing the intermediate pressure. Based on these results, the optimizations of system design and system operation are put forward. The application of the auxiliary gas cooler can improve the performance of the transcritical CO<sub>2</sub> two-stage compression refrigeration system. Operators can decrease the discharge temperature of the compound compressor (HPS) by reducing the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>T</mi><mrow><mi>a</mi><mi>g</mi><mi>c</mi><mo>,</mo><mi>o</mi><mi>u</mi><mi>t</mi></mrow></msub></mrow></semantics></math></inline-formula>, and increase the COP and the exergy efficiency by enhancing the intermediate pressure.
topic energy analysis
exergy analysis
coefficient of performance
exergy efficiency
auxiliary gas cooler
intermediate pressure
url https://www.mdpi.com/1996-1073/14/17/5578
work_keys_str_mv AT yuyaosun performanceoptimizationsofthetranscriticalcosub2subtwostagecompressionrefrigerationsystemandinfluencesoftheauxiliarygascooler
AT jinfengwang performanceoptimizationsofthetranscriticalcosub2subtwostagecompressionrefrigerationsystemandinfluencesoftheauxiliarygascooler
AT jingxie performanceoptimizationsofthetranscriticalcosub2subtwostagecompressionrefrigerationsystemandinfluencesoftheauxiliarygascooler
_version_ 1717760433671110656