Noise Estimation and Suppression Using Nonlinear Function with A Priori Speech Absence Probability in Speech Enhancement
This paper proposes a noise-biased compensation of minimum statistics (MS) method using a nonlinear function and a priori speech absence probability (SAP) for speech enhancement in highly nonstationary noisy environments. The MS method is a well-known technique for noise power estimation in nonstati...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | Journal of Sensors |
Online Access: | http://dx.doi.org/10.1155/2016/5352437 |
Summary: | This paper proposes a noise-biased compensation of minimum statistics (MS) method using a nonlinear function and a priori speech absence probability (SAP) for speech enhancement in highly nonstationary noisy environments. The MS method is a well-known technique for noise power estimation in nonstationary noisy environments; however, it tends to bias noise estimation below that of the true noise level. The proposed method is combined with an adaptive parameter based on a sigmoid function and a priori SAP for residual noise reduction. Additionally, our method uses an autoparameter to control the trade-off between speech distortion and residual noise. We evaluate the estimation of noise power in highly nonstationary and varying noise environments. The improvement can be confirmed in terms of signal-to-noise ratio (SNR) and the Itakura-Saito Distortion Measure (ISDM). |
---|---|
ISSN: | 1687-725X 1687-7268 |