Generation and characterization of an induced pluripotent stem cell (iPSC) line (NUIGi003-A) from a long QT syndrome type 2 (LQT2) patient harbouring the KCNH2 c.2464G>A pathogenic variant
Long QT syndrome (LQTS), an inherited cardiac ion channelopathy, is associated with ventricular arrhythmias and risk of sudden death. LQTS sub-type 2 (LQT2) is caused by pathogenic variants in KCNH2 encoding the α-subunit of Kv11.1, thus affecting the rapid component of delayed rectifier K+ current...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-12-01
|
Series: | Stem Cell Research |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1873506120302981 |
Summary: | Long QT syndrome (LQTS), an inherited cardiac ion channelopathy, is associated with ventricular arrhythmias and risk of sudden death. LQTS sub-type 2 (LQT2) is caused by pathogenic variants in KCNH2 encoding the α-subunit of Kv11.1, thus affecting the rapid component of delayed rectifier K+ current (IKr) channel during the action potential. In this study, non-integrational Sendai reprogramming method was used to generate an induced-pluripotent-stem-cell (iPSC) line carrying the KCNH2 c.2464G>A (p.Val822Met) pathogenic variant from a LQT2 patient. This patient-specific iPSC line NUIGi003-A harbouring the c.2464G>A variant expressed pluripotency markers and demonstrated the differentiation potential to all three germ layers. |
---|---|
ISSN: | 1873-5061 |