Sparse Reconstruction Method for Separating Cardiac and Respiratory Components from Electrical Bioimpedance Measurements

In this work, we investigate the possibility of employing sparse reconstruction framework for the separation of cardiac and respiratory signal components from the bioimpedance measurements. The signal decomposition is complicated by the nonstationarity of the signal and overlapping of their spectra....

Full description

Bibliographic Details
Main Authors: Maksim Butsenko, Olev Martens, Andrei Krivosei, Yannick Le Moullec
Format: Article
Language:English
Published: Kaunas University of Technology 2018-10-01
Series:Elektronika ir Elektrotechnika
Subjects:
Online Access:http://eejournal.ktu.lt/index.php/elt/article/view/21844
id doaj-a05f5d615dd145a1b760b086c8954812
record_format Article
spelling doaj-a05f5d615dd145a1b760b086c89548122020-11-25T03:16:55ZengKaunas University of TechnologyElektronika ir Elektrotechnika1392-12152029-57312018-10-01245576110.5755/j01.eie.24.5.2184421844Sparse Reconstruction Method for Separating Cardiac and Respiratory Components from Electrical Bioimpedance MeasurementsMaksim ButsenkoOlev MartensAndrei KrivoseiYannick Le MoullecIn this work, we investigate the possibility of employing sparse reconstruction framework for the separation of cardiac and respiratory signal components from the bioimpedance measurements. The signal decomposition is complicated by the nonstationarity of the signal and overlapping of their spectra. The signal has a harmonic structure, which is sparse in the spectral domain. We approach the problem by considering a dictionary with integrated wideband elements describing spectral components of the considered signal. The parameter estimation task is solved by the means of sparse reconstruction where solving the optimization problem returns a sparse vector of relevant dictionary atoms. DOI: http://dx.doi.org/10.5755/j01.eie.24.5.21844http://eejournal.ktu.lt/index.php/elt/article/view/21844electrical bioimpedancecardiac and respiratory componentsparameter estimationsparse reconstructionwideband dictionary.
collection DOAJ
language English
format Article
sources DOAJ
author Maksim Butsenko
Olev Martens
Andrei Krivosei
Yannick Le Moullec
spellingShingle Maksim Butsenko
Olev Martens
Andrei Krivosei
Yannick Le Moullec
Sparse Reconstruction Method for Separating Cardiac and Respiratory Components from Electrical Bioimpedance Measurements
Elektronika ir Elektrotechnika
electrical bioimpedance
cardiac and respiratory components
parameter estimation
sparse reconstruction
wideband dictionary.
author_facet Maksim Butsenko
Olev Martens
Andrei Krivosei
Yannick Le Moullec
author_sort Maksim Butsenko
title Sparse Reconstruction Method for Separating Cardiac and Respiratory Components from Electrical Bioimpedance Measurements
title_short Sparse Reconstruction Method for Separating Cardiac and Respiratory Components from Electrical Bioimpedance Measurements
title_full Sparse Reconstruction Method for Separating Cardiac and Respiratory Components from Electrical Bioimpedance Measurements
title_fullStr Sparse Reconstruction Method for Separating Cardiac and Respiratory Components from Electrical Bioimpedance Measurements
title_full_unstemmed Sparse Reconstruction Method for Separating Cardiac and Respiratory Components from Electrical Bioimpedance Measurements
title_sort sparse reconstruction method for separating cardiac and respiratory components from electrical bioimpedance measurements
publisher Kaunas University of Technology
series Elektronika ir Elektrotechnika
issn 1392-1215
2029-5731
publishDate 2018-10-01
description In this work, we investigate the possibility of employing sparse reconstruction framework for the separation of cardiac and respiratory signal components from the bioimpedance measurements. The signal decomposition is complicated by the nonstationarity of the signal and overlapping of their spectra. The signal has a harmonic structure, which is sparse in the spectral domain. We approach the problem by considering a dictionary with integrated wideband elements describing spectral components of the considered signal. The parameter estimation task is solved by the means of sparse reconstruction where solving the optimization problem returns a sparse vector of relevant dictionary atoms. DOI: http://dx.doi.org/10.5755/j01.eie.24.5.21844
topic electrical bioimpedance
cardiac and respiratory components
parameter estimation
sparse reconstruction
wideband dictionary.
url http://eejournal.ktu.lt/index.php/elt/article/view/21844
work_keys_str_mv AT maksimbutsenko sparsereconstructionmethodforseparatingcardiacandrespiratorycomponentsfromelectricalbioimpedancemeasurements
AT olevmartens sparsereconstructionmethodforseparatingcardiacandrespiratorycomponentsfromelectricalbioimpedancemeasurements
AT andreikrivosei sparsereconstructionmethodforseparatingcardiacandrespiratorycomponentsfromelectricalbioimpedancemeasurements
AT yannicklemoullec sparsereconstructionmethodforseparatingcardiacandrespiratorycomponentsfromelectricalbioimpedancemeasurements
_version_ 1724634240474152960