Daily Reportable Disease Spatiotemporal Cluster Detection, New York City, New York, USA, 2014–2015
Each day, the New York City Department of Health and Mental Hygiene uses the free SaTScan software to apply prospective space–time permutation scan statistics to strengthen early outbreak detection for 35 reportable diseases. This method prompted early detection of outbreaks of community-acquired le...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Centers for Disease Control and Prevention
2016-10-01
|
Series: | Emerging Infectious Diseases |
Subjects: | |
Online Access: | https://wwwnc.cdc.gov/eid/article/22/10/16-0097_article |
id |
doaj-a035c252b4c1488f945883c0c26d3614 |
---|---|
record_format |
Article |
spelling |
doaj-a035c252b4c1488f945883c0c26d36142020-11-24T23:34:47ZengCenters for Disease Control and PreventionEmerging Infectious Diseases1080-60401080-60592016-10-0122101808181210.3201/eid2210.160097Daily Reportable Disease Spatiotemporal Cluster Detection, New York City, New York, USA, 2014–2015Sharon K. GreeneEric R. PetersonDeborah KapellAnnie D. FineMartin KulldorffEach day, the New York City Department of Health and Mental Hygiene uses the free SaTScan software to apply prospective space–time permutation scan statistics to strengthen early outbreak detection for 35 reportable diseases. This method prompted early detection of outbreaks of community-acquired legionellosis and shigellosis.https://wwwnc.cdc.gov/eid/article/22/10/16-0097_articlecommunicable diseasesdisease clusteringoutbreaksdetectionepidemiologysurveillance |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sharon K. Greene Eric R. Peterson Deborah Kapell Annie D. Fine Martin Kulldorff |
spellingShingle |
Sharon K. Greene Eric R. Peterson Deborah Kapell Annie D. Fine Martin Kulldorff Daily Reportable Disease Spatiotemporal Cluster Detection, New York City, New York, USA, 2014–2015 Emerging Infectious Diseases communicable diseases disease clustering outbreaks detection epidemiology surveillance |
author_facet |
Sharon K. Greene Eric R. Peterson Deborah Kapell Annie D. Fine Martin Kulldorff |
author_sort |
Sharon K. Greene |
title |
Daily Reportable Disease Spatiotemporal Cluster Detection, New York City, New York, USA, 2014–2015 |
title_short |
Daily Reportable Disease Spatiotemporal Cluster Detection, New York City, New York, USA, 2014–2015 |
title_full |
Daily Reportable Disease Spatiotemporal Cluster Detection, New York City, New York, USA, 2014–2015 |
title_fullStr |
Daily Reportable Disease Spatiotemporal Cluster Detection, New York City, New York, USA, 2014–2015 |
title_full_unstemmed |
Daily Reportable Disease Spatiotemporal Cluster Detection, New York City, New York, USA, 2014–2015 |
title_sort |
daily reportable disease spatiotemporal cluster detection, new york city, new york, usa, 2014–2015 |
publisher |
Centers for Disease Control and Prevention |
series |
Emerging Infectious Diseases |
issn |
1080-6040 1080-6059 |
publishDate |
2016-10-01 |
description |
Each day, the New York City Department of Health and Mental Hygiene uses the free SaTScan software to apply prospective space–time permutation scan statistics to strengthen early outbreak detection for 35 reportable diseases. This method prompted early detection of outbreaks of community-acquired legionellosis and shigellosis. |
topic |
communicable diseases disease clustering outbreaks detection epidemiology surveillance |
url |
https://wwwnc.cdc.gov/eid/article/22/10/16-0097_article |
work_keys_str_mv |
AT sharonkgreene dailyreportablediseasespatiotemporalclusterdetectionnewyorkcitynewyorkusa20142015 AT ericrpeterson dailyreportablediseasespatiotemporalclusterdetectionnewyorkcitynewyorkusa20142015 AT deborahkapell dailyreportablediseasespatiotemporalclusterdetectionnewyorkcitynewyorkusa20142015 AT anniedfine dailyreportablediseasespatiotemporalclusterdetectionnewyorkcitynewyorkusa20142015 AT martinkulldorff dailyreportablediseasespatiotemporalclusterdetectionnewyorkcitynewyorkusa20142015 |
_version_ |
1725527631264219136 |