Dynamic Optimization of the Golf Swing Using a Six Degree-of-Freedom Biomechanical Model
Advances in golf club performance are typically based on the notion that golfer biomechanics do not change when modifications to the golf club are made. The purpose of this work was to develop a full-swing, forward dynamic golf drive model capable of providing deeper understanding of the interaction...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-02-01
|
Series: | Proceedings |
Subjects: | |
Online Access: | http://www.mdpi.com/2504-3900/2/6/243 |
id |
doaj-a01147d9588c4d968f2344dc2c70f965 |
---|---|
record_format |
Article |
spelling |
doaj-a01147d9588c4d968f2344dc2c70f9652020-11-24T21:00:39ZengMDPI AGProceedings2504-39002018-02-012624310.3390/proceedings2060243proceedings2060243Dynamic Optimization of the Golf Swing Using a Six Degree-of-Freedom Biomechanical ModelWilliam McNally0John McPhee1Systems Design Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, CanadaSystems Design Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, CanadaAdvances in golf club performance are typically based on the notion that golfer biomechanics do not change when modifications to the golf club are made. The purpose of this work was to develop a full-swing, forward dynamic golf drive model capable of providing deeper understanding of the interaction between golfer biomechanics and the physical properties of golf clubs. A three-dimensional biomechanical model of a golfer, a Rayleigh beam model of a flexible club, an impact model based on volumetric contact, and a spin-rate dependent aerodynamic ball flight model are used to simulate a golf drive. The six degree-of-freedom biomechanical model features a two degree-of-freedom shoulder joint and a pelvis to model the X-factor. It is driven by parametric joint torque generators designed to mimic muscle torque production, which are scaled by an eccentric-concentric torque-velocity function. Passive resistive torque profiles fit to experimental data are applied to the joints, representing the resistance caused by ligaments and soft tissues near the joint limits. Using a custom optimization routine combining genetic and search-based algorithms, the biomechanical golf swing model was optimized by maximizing carry distance. Comparing the simulated grip kinematics to a golf swing motion capture experiment, the biomechanical model effectively reproduced the motion of an elite golf swing.http://www.mdpi.com/2504-3900/2/6/243golf swingmultibody simulationbiomechanical modellingforward dynamics |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
William McNally John McPhee |
spellingShingle |
William McNally John McPhee Dynamic Optimization of the Golf Swing Using a Six Degree-of-Freedom Biomechanical Model Proceedings golf swing multibody simulation biomechanical modelling forward dynamics |
author_facet |
William McNally John McPhee |
author_sort |
William McNally |
title |
Dynamic Optimization of the Golf Swing Using a Six Degree-of-Freedom Biomechanical Model |
title_short |
Dynamic Optimization of the Golf Swing Using a Six Degree-of-Freedom Biomechanical Model |
title_full |
Dynamic Optimization of the Golf Swing Using a Six Degree-of-Freedom Biomechanical Model |
title_fullStr |
Dynamic Optimization of the Golf Swing Using a Six Degree-of-Freedom Biomechanical Model |
title_full_unstemmed |
Dynamic Optimization of the Golf Swing Using a Six Degree-of-Freedom Biomechanical Model |
title_sort |
dynamic optimization of the golf swing using a six degree-of-freedom biomechanical model |
publisher |
MDPI AG |
series |
Proceedings |
issn |
2504-3900 |
publishDate |
2018-02-01 |
description |
Advances in golf club performance are typically based on the notion that golfer biomechanics do not change when modifications to the golf club are made. The purpose of this work was to develop a full-swing, forward dynamic golf drive model capable of providing deeper understanding of the interaction between golfer biomechanics and the physical properties of golf clubs. A three-dimensional biomechanical model of a golfer, a Rayleigh beam model of a flexible club, an impact model based on volumetric contact, and a spin-rate dependent aerodynamic ball flight model are used to simulate a golf drive. The six degree-of-freedom biomechanical model features a two degree-of-freedom shoulder joint and a pelvis to model the X-factor. It is driven by parametric joint torque generators designed to mimic muscle torque production, which are scaled by an eccentric-concentric torque-velocity function. Passive resistive torque profiles fit to experimental data are applied to the joints, representing the resistance caused by ligaments and soft tissues near the joint limits. Using a custom optimization routine combining genetic and search-based algorithms, the biomechanical golf swing model was optimized by maximizing carry distance. Comparing the simulated grip kinematics to a golf swing motion capture experiment, the biomechanical model effectively reproduced the motion of an elite golf swing. |
topic |
golf swing multibody simulation biomechanical modelling forward dynamics |
url |
http://www.mdpi.com/2504-3900/2/6/243 |
work_keys_str_mv |
AT williammcnally dynamicoptimizationofthegolfswingusingasixdegreeoffreedombiomechanicalmodel AT johnmcphee dynamicoptimizationofthegolfswingusingasixdegreeoffreedombiomechanicalmodel |
_version_ |
1716779080020393984 |