Modelling shear strength of compacted soils
Compacted soils constitute most engineering projects such as earth dams, embankments, pavements, and engineered slopes because of their high shear strength and low compressibility. The shear strength of compacted soils is a key soil parameter in the design of earth structures but it is seldom determ...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2019-01-01
|
Series: | E3S Web of Conferences |
Online Access: | https://www.e3s-conferences.org/articles/e3sconf/pdf/2019/18/e3sconf_isg2019_15007.pdf |
Summary: | Compacted soils constitute most engineering projects such as earth dams, embankments, pavements, and engineered slopes because of their high shear strength and low compressibility. The shear strength of compacted soils is a key soil parameter in the design of earth structures but it is seldom determined correctly due to their unsaturated state. The shear strength of compacted soils can be better evaluated under the framework of unsaturated soil mechanics. Saturated and unsaturated tests were conducted on compacted specimens using conventional direct shear apparatus under constant water content condition. Tests were conducted at different water contents and net normal stresses. The main objective of this study is to develop a shear strength model for compacted soils. Initial matric suction was measured before the test using the filter paper method. The two-stress state variables together with the extended Mohr-Coulomb failure criterion for unsaturated soils were used to obtain a lower bound model of the shear strength. The model was demonstrated using published data. |
---|---|
ISSN: | 2267-1242 |