On the unique continuation property for a nonlinear dispersive system

We solve the following problem: If $(u,\,v)=(u(x,\,t),\,v(x,\,t))$ is a solution of the Dispersive Coupled System with $t_{1}<t_{2}$ which are sufficiently smooth and such that: $\operatorname{supp}u(\,.\,,\,t_{j})\subset (a,\,b)\,$ and $\,\operatorname{supp}v(\,.\,,\, t_{j})\subset (a,\,b),\,-\,...

Full description

Bibliographic Details
Main Authors: A. Kozakevicius, Octavio Paulo Vera Villagran
Format: Article
Language:English
Published: University of Szeged 2005-06-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=222
Description
Summary:We solve the following problem: If $(u,\,v)=(u(x,\,t),\,v(x,\,t))$ is a solution of the Dispersive Coupled System with $t_{1}<t_{2}$ which are sufficiently smooth and such that: $\operatorname{supp}u(\,.\,,\,t_{j})\subset (a,\,b)\,$ and $\,\operatorname{supp}v(\,.\,,\, t_{j})\subset (a,\,b),\,-\,\infty<a<b<\infty ,\,$ $j=1,\,2.\,$ Then $u\equiv 0$ and $v\equiv 0.$
ISSN:1417-3875
1417-3875