Application of a Projection Method for Simulating Flow of a Shear-Thinning Fluid

In this paper, a first-order projection method is used to solve the Navier&#8722;Stokes equations numerically for a time-dependent incompressible fluid inside a three-dimensional (3-D) lid-driven cavity. The flow structure in a cavity of aspect ratio <inline-formula> <math display="...

Full description

Bibliographic Details
Main Authors: Masoud Jabbari, James McDonough, Evan Mitsoulis, Jesper Henri Hattel
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Fluids
Subjects:
Online Access:https://www.mdpi.com/2311-5521/4/3/124
id doaj-9fbbaf3268f84f158577c5094156f40c
record_format Article
spelling doaj-9fbbaf3268f84f158577c5094156f40c2020-11-25T02:32:46ZengMDPI AGFluids2311-55212019-07-014312410.3390/fluids4030124fluids4030124Application of a Projection Method for Simulating Flow of a Shear-Thinning FluidMasoud Jabbari0James McDonough1Evan Mitsoulis2Jesper Henri Hattel3School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UKDepartments of Mechanical Engineering and Mathematics, University of Kentucky, Lexington, KY 40506, USASchool of Mining Engineering and Metallurgy, National Technical University of Athens, 15780 Zografou, GreeceDepartments of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby, DenmarkIn this paper, a first-order projection method is used to solve the Navier&#8722;Stokes equations numerically for a time-dependent incompressible fluid inside a three-dimensional (3-D) lid-driven cavity. The flow structure in a cavity of aspect ratio <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#948;</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and Reynolds numbers <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>100</mn> <mo>,</mo> <mspace width="0.166667em"></mspace> <mn>400</mn> <mo>,</mo> <mspace width="0.166667em"></mspace> <mn>1000</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is compared with existing results to validate the code. We then apply the developed code to flow of a generalised Newtonian fluid with the well-known Ostwald&#8722;de Waele power-law model. Results show that, by decreasing <i>n</i> (further deviation from Newtonian behaviour) from 1 to 0.9, the peak values of the velocity decrease while the centre of the main vortex moves towards the upper right corner of the cavity. However, for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics> </math> </inline-formula>, the behaviour is reversed and the main vortex shifts back towards the centre of the cavity. We moreover demonstrate that, for the deeper cavities, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#948;</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="0.166667em"></mspace> <mn>4</mn> </mrow> </semantics> </math> </inline-formula>, as the shear-thinning parameter <i>n</i> decreased the top-main vortex expands towards the bottom surface, and correspondingly the secondary flow becomes less pronounced in the plane perpendicular to the cavity lid.https://www.mdpi.com/2311-5521/4/3/124lid-driven cavityprojection methodshear-thinningaspect ratio<i>Re</i> numbers
collection DOAJ
language English
format Article
sources DOAJ
author Masoud Jabbari
James McDonough
Evan Mitsoulis
Jesper Henri Hattel
spellingShingle Masoud Jabbari
James McDonough
Evan Mitsoulis
Jesper Henri Hattel
Application of a Projection Method for Simulating Flow of a Shear-Thinning Fluid
Fluids
lid-driven cavity
projection method
shear-thinning
aspect ratio
<i>Re</i> numbers
author_facet Masoud Jabbari
James McDonough
Evan Mitsoulis
Jesper Henri Hattel
author_sort Masoud Jabbari
title Application of a Projection Method for Simulating Flow of a Shear-Thinning Fluid
title_short Application of a Projection Method for Simulating Flow of a Shear-Thinning Fluid
title_full Application of a Projection Method for Simulating Flow of a Shear-Thinning Fluid
title_fullStr Application of a Projection Method for Simulating Flow of a Shear-Thinning Fluid
title_full_unstemmed Application of a Projection Method for Simulating Flow of a Shear-Thinning Fluid
title_sort application of a projection method for simulating flow of a shear-thinning fluid
publisher MDPI AG
series Fluids
issn 2311-5521
publishDate 2019-07-01
description In this paper, a first-order projection method is used to solve the Navier&#8722;Stokes equations numerically for a time-dependent incompressible fluid inside a three-dimensional (3-D) lid-driven cavity. The flow structure in a cavity of aspect ratio <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#948;</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula> and Reynolds numbers <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <mn>100</mn> <mo>,</mo> <mspace width="0.166667em"></mspace> <mn>400</mn> <mo>,</mo> <mspace width="0.166667em"></mspace> <mn>1000</mn> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> is compared with existing results to validate the code. We then apply the developed code to flow of a generalised Newtonian fluid with the well-known Ostwald&#8722;de Waele power-law model. Results show that, by decreasing <i>n</i> (further deviation from Newtonian behaviour) from 1 to 0.9, the peak values of the velocity decrease while the centre of the main vortex moves towards the upper right corner of the cavity. However, for <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics> </math> </inline-formula>, the behaviour is reversed and the main vortex shifts back towards the centre of the cavity. We moreover demonstrate that, for the deeper cavities, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#948;</mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mspace width="0.166667em"></mspace> <mn>4</mn> </mrow> </semantics> </math> </inline-formula>, as the shear-thinning parameter <i>n</i> decreased the top-main vortex expands towards the bottom surface, and correspondingly the secondary flow becomes less pronounced in the plane perpendicular to the cavity lid.
topic lid-driven cavity
projection method
shear-thinning
aspect ratio
<i>Re</i> numbers
url https://www.mdpi.com/2311-5521/4/3/124
work_keys_str_mv AT masoudjabbari applicationofaprojectionmethodforsimulatingflowofashearthinningfluid
AT jamesmcdonough applicationofaprojectionmethodforsimulatingflowofashearthinningfluid
AT evanmitsoulis applicationofaprojectionmethodforsimulatingflowofashearthinningfluid
AT jesperhenrihattel applicationofaprojectionmethodforsimulatingflowofashearthinningfluid
_version_ 1724817915837939712