Influence of Tuning Fork Resonance Properties on Quartz-Enhanced Photoacoustic Spectroscopy Performance

A detailed investigation of the influence of quartz tuning forks (QTFs) resonance properties on the performance of quartz-enhanced photoacoustic spectroscopy (QEPAS) exploiting QTFs as acousto-electric transducers is reported. The performance of two commercial QTFs with the same resonance frequency...

Full description

Bibliographic Details
Main Authors: Huadan Zheng, Haoyang Lin, Lei Dong, Yihua Liu, Pietro Patimisco, John Zweck, Ali Mozumder, Angelo Sampaolo, Vincenzo Spagnolo, Bincheng Huang, Jieyuan Tang, Linpeng Dong, Wenguo Zhu, Jianhui Yu, Zhe Chen, Frank K. Tittel
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/19/18/3825
Description
Summary:A detailed investigation of the influence of quartz tuning forks (QTFs) resonance properties on the performance of quartz-enhanced photoacoustic spectroscopy (QEPAS) exploiting QTFs as acousto-electric transducers is reported. The performance of two commercial QTFs with the same resonance frequency (32.7 KHz) but different geometries and two custom QTFs with lower resonance frequencies (2.9 KHz and 7.2 KHz) were compared and discussed. The results demonstrated that the fundamental resonance frequency as well as the quality factor and the electrical resistance were strongly inter-dependent on the QTF prongs geometry. Even if the resonance frequency was reduced, the quality factor must be kept as high as possible and the electrical resistance as low as possible in order to guarantee high QEPAS performance.
ISSN:1424-8220