Preliminary data on the presence of an alternate vanadium nitrogenase in a culturable cyanobiont of Azolla pinnata R. Brown: Implications on Chronic Kidney Disease of an unknown etiology (CKDu)

In a recent paper titled “How a taxonomically-ambiguous cyanobiont and vanadate assist in the phytoremediation of cadmium by Azolla pinnata: implications for CKDu” (Atugoda et al., 2018) [1] it was shown by us, that plant health and phytoremediation capacities, of Azolla pinnata R. Brown, were eleva...

Full description

Bibliographic Details
Main Authors: B.L.D.U. Pushpakumara, D. Gunawardana
Format: Article
Language:English
Published: Elsevier 2018-12-01
Series:Data in Brief
Online Access:http://www.sciencedirect.com/science/article/pii/S2352340918314665
id doaj-9f9e5dcaa445415ba32306501fa42da0
record_format Article
spelling doaj-9f9e5dcaa445415ba32306501fa42da02020-11-24T21:47:52ZengElsevierData in Brief2352-34092018-12-012125902597Preliminary data on the presence of an alternate vanadium nitrogenase in a culturable cyanobiont of Azolla pinnata R. Brown: Implications on Chronic Kidney Disease of an unknown etiology (CKDu)B.L.D.U. Pushpakumara0D. Gunawardana1Department of Botany, University of Sri Jayewardenepura, Sri LankaCorresponding author.; Department of Botany, University of Sri Jayewardenepura, Sri LankaIn a recent paper titled “How a taxonomically-ambiguous cyanobiont and vanadate assist in the phytoremediation of cadmium by Azolla pinnata: implications for CKDu” (Atugoda et al., 2018) [1] it was shown by us, that plant health and phytoremediation capacities, of Azolla pinnata R. Brown, were elevated in the presence of vanadate, a vanadium containing ion. This highlighted a possibility, that either the major or minor cyanobionts of Azolla pinnata, could possess a vanadium dependent nitrogenase enzyme, as an alternate nitrogenase, in addition to the molybdenum counterpart. In this data article, we report the isolation of a minor cyanobiont which we name as Fischerella uthpalarensis. We grew Fischerella uthpalarensis, exclusively in N-free media, with only molybdenum (Mo+ V-), with only vanadium (V+ Mo-) and with neither (negative control), to find out the growth patterns in the relevant media. While F. uthpalarensis grew as green colored consistencies, increasing gradually in turbidity, for 4 weeks in culture, both, in the presence of molybdenum (Mo+ V-), as well as vanadium (V+ Mo-), the negative control, showed no, or very little growth. This alludes to the presence of dual nitrogenases in Fischerella uthpalarensis. An attempt was also made by us to unravel the vnf genes, responsible for the V-nitrogenase. However, it was not possible to PCR amplify the vnf genes, from both, the unculturable major (using total DNA from the Azolla-Nostoc azollae symbiosis) and minor (DNA directly from the cultured F. uthpalarensis) cyanobionts. This is the first time, to our knowledge, that an endosymbiotic cyanobacterium inside a plant compartment, has been shown to contain two possible nitrogenase systems.http://www.sciencedirect.com/science/article/pii/S2352340918314665
collection DOAJ
language English
format Article
sources DOAJ
author B.L.D.U. Pushpakumara
D. Gunawardana
spellingShingle B.L.D.U. Pushpakumara
D. Gunawardana
Preliminary data on the presence of an alternate vanadium nitrogenase in a culturable cyanobiont of Azolla pinnata R. Brown: Implications on Chronic Kidney Disease of an unknown etiology (CKDu)
Data in Brief
author_facet B.L.D.U. Pushpakumara
D. Gunawardana
author_sort B.L.D.U. Pushpakumara
title Preliminary data on the presence of an alternate vanadium nitrogenase in a culturable cyanobiont of Azolla pinnata R. Brown: Implications on Chronic Kidney Disease of an unknown etiology (CKDu)
title_short Preliminary data on the presence of an alternate vanadium nitrogenase in a culturable cyanobiont of Azolla pinnata R. Brown: Implications on Chronic Kidney Disease of an unknown etiology (CKDu)
title_full Preliminary data on the presence of an alternate vanadium nitrogenase in a culturable cyanobiont of Azolla pinnata R. Brown: Implications on Chronic Kidney Disease of an unknown etiology (CKDu)
title_fullStr Preliminary data on the presence of an alternate vanadium nitrogenase in a culturable cyanobiont of Azolla pinnata R. Brown: Implications on Chronic Kidney Disease of an unknown etiology (CKDu)
title_full_unstemmed Preliminary data on the presence of an alternate vanadium nitrogenase in a culturable cyanobiont of Azolla pinnata R. Brown: Implications on Chronic Kidney Disease of an unknown etiology (CKDu)
title_sort preliminary data on the presence of an alternate vanadium nitrogenase in a culturable cyanobiont of azolla pinnata r. brown: implications on chronic kidney disease of an unknown etiology (ckdu)
publisher Elsevier
series Data in Brief
issn 2352-3409
publishDate 2018-12-01
description In a recent paper titled “How a taxonomically-ambiguous cyanobiont and vanadate assist in the phytoremediation of cadmium by Azolla pinnata: implications for CKDu” (Atugoda et al., 2018) [1] it was shown by us, that plant health and phytoremediation capacities, of Azolla pinnata R. Brown, were elevated in the presence of vanadate, a vanadium containing ion. This highlighted a possibility, that either the major or minor cyanobionts of Azolla pinnata, could possess a vanadium dependent nitrogenase enzyme, as an alternate nitrogenase, in addition to the molybdenum counterpart. In this data article, we report the isolation of a minor cyanobiont which we name as Fischerella uthpalarensis. We grew Fischerella uthpalarensis, exclusively in N-free media, with only molybdenum (Mo+ V-), with only vanadium (V+ Mo-) and with neither (negative control), to find out the growth patterns in the relevant media. While F. uthpalarensis grew as green colored consistencies, increasing gradually in turbidity, for 4 weeks in culture, both, in the presence of molybdenum (Mo+ V-), as well as vanadium (V+ Mo-), the negative control, showed no, or very little growth. This alludes to the presence of dual nitrogenases in Fischerella uthpalarensis. An attempt was also made by us to unravel the vnf genes, responsible for the V-nitrogenase. However, it was not possible to PCR amplify the vnf genes, from both, the unculturable major (using total DNA from the Azolla-Nostoc azollae symbiosis) and minor (DNA directly from the cultured F. uthpalarensis) cyanobionts. This is the first time, to our knowledge, that an endosymbiotic cyanobacterium inside a plant compartment, has been shown to contain two possible nitrogenase systems.
url http://www.sciencedirect.com/science/article/pii/S2352340918314665
work_keys_str_mv AT bldupushpakumara preliminarydataonthepresenceofanalternatevanadiumnitrogenaseinaculturablecyanobiontofazollapinnatarbrownimplicationsonchronickidneydiseaseofanunknownetiologyckdu
AT dgunawardana preliminarydataonthepresenceofanalternatevanadiumnitrogenaseinaculturablecyanobiontofazollapinnatarbrownimplicationsonchronickidneydiseaseofanunknownetiologyckdu
_version_ 1725895077715247104