Graptopetalum paraguayense Ameliorates Airway Inflammation and Allergy in Ovalbumin- (OVA-) Sensitized BALB/C Mice by Inhibiting Th2 Signal

Role of inflammation-induced oxidative stress in the pathogenesis and progression of chronic inflammatory airways diseases has received increasing attention in recent years. Nuclear factor erythroid 2-related factor 2 is the primary transcription factor that regulates the expression of antioxidant a...

Full description

Bibliographic Details
Main Authors: Bao-Hong Lee, Yu-Hsiang Cheng, She-Ching Wu
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Evidence-Based Complementary and Alternative Medicine
Online Access:http://dx.doi.org/10.1155/2013/237096
Description
Summary:Role of inflammation-induced oxidative stress in the pathogenesis and progression of chronic inflammatory airways diseases has received increasing attention in recent years. Nuclear factor erythroid 2-related factor 2 is the primary transcription factor that regulates the expression of antioxidant and detoxifying enzymes. Graptopetalum paraguayense E. Walther, a vegetable consumed in Taiwan, has been used in folk medicine for protection against liver injury through elevating antioxidation. Recently, we found that gallic acid is an active compound of Graptopetalum paraguayense E. Walther, which has been reported to inhibit T-helper 2 cytokines. Currently, we assumed that Graptopetalum paraguayense E. Walther may potentially protect against ovalbumin-induced allergy and airway inflammation. Results demonstrated that Graptopetalum paraguayense E. Walther ethanolic extracts (GPE) clearly inhibited airway inflammation, mucus cell hyperplasia, and eosinophilia in OVA-challenged mice. Additionally, GPE also prevented T-cell infiltration and Th2 cytokines, including interleukin- (IL-)4, IL-5, and IL-13 generations in bronchial alveolar lavage fluid. The adhesion molecules ICAM-1 and VCAM-1 were substantially reduced by GPE treatment mediated by Nrf2 activation. Moreover, GPE attenuated GATA3 expression and inhibited Th2 signals of the T cells. These findings suggested that GPE ameliorated the development of airway inflammation through immune regulation.
ISSN:1741-427X
1741-4288