Tunable gauge potential for spinless particles in driven lattices

We present a universal method to create a tunable, artificial vector gauge potential for neutral particles trapped in an optical lattice. A suitable periodic shaking of the lattice allows to engineer a Peierls phase for the hopping parameters. This scheme thus allows one to address the atomic intern...

Full description

Bibliographic Details
Main Authors: Simonet J., Struck J., Weinberg M., Ölschläger C., Hauke P., Eckardt A., Lewenstein M., Sengstock K., Windpassinger P.
Format: Article
Language:English
Published: EDP Sciences 2013-08-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/20135701004
Description
Summary:We present a universal method to create a tunable, artificial vector gauge potential for neutral particles trapped in an optical lattice. A suitable periodic shaking of the lattice allows to engineer a Peierls phase for the hopping parameters. This scheme thus allows one to address the atomic internal degrees of freedom independently. We experimentally demonstrate the realisation of such artificial potentials in a 1D lattice, which generate ground state superfluids at arbitrary non-zero quasimomentum [4]. This scheme offers fascinating possibilities to emulate synthetic magnetic fields in 2D lattices. In a triangular lattice, continuously tunable staggered fluxes are realised. Spontaneous symmetry breaking has recently been observed for a π-flux [23]. With the presented scheme, we are now able to study the influence of a small symmetry breaking perturbation.
ISSN:2100-014X