STK3 Suppresses Ovarian Cancer Progression by Activating NF-κB Signaling to Recruit CD8+ T-Cells
Serine/threonine protein kinase-3 (STK3) is a critical molecule of the Hippo pathway but little is known about its biological functions in the ovarian cancer development. We demonstrated the roles of STK3 in ovarian cancer. Existing databases were used to study the expression profile of STK3. STK3 w...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2020-01-01
|
Series: | Journal of Immunology Research |
Online Access: | http://dx.doi.org/10.1155/2020/7263602 |
id |
doaj-9f660dbaeb0a4a4e946d616eceace641 |
---|---|
record_format |
Article |
spelling |
doaj-9f660dbaeb0a4a4e946d616eceace6412020-11-25T03:55:01ZengHindawi LimitedJournal of Immunology Research2314-88612314-71562020-01-01202010.1155/2020/72636027263602STK3 Suppresses Ovarian Cancer Progression by Activating NF-κB Signaling to Recruit CD8+ T-CellsXiangyu Wang0Fengmian Wang1Zhi-Gang Zhang2Xiao-Mei Yang3Rong Zhang4The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, ChinaThe Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, ChinaState Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201109, ChinaState Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201109, ChinaThe Third School of Clinical Medicine, Southern Medical University, Guangzhou 510500, ChinaSerine/threonine protein kinase-3 (STK3) is a critical molecule of the Hippo pathway but little is known about its biological functions in the ovarian cancer development. We demonstrated the roles of STK3 in ovarian cancer. Existing databases were used to study the expression profile of STK3. STK3 was significantly downregulated in OC patients, and the low STK3 expression was correlated with a poor prognosis. In vitro cell proliferation, apoptosis, and migration assays, and in vivo subcutaneous xenograft tumor models were used to determine the roles of STK3. The overexpression of STK3 significantly inhibited cell proliferation, apoptosis, and migration of ovarian cancer cells in vitro and tumor growth in vivo. Bisulfite sequencing PCR analysis was performed to validate the methylation of STK3 in ovarian cancer. RNA sequencing and gene set enrichment analysis (GSEA) were used to compare the transcriptome changes in the STK3 overexpression ovarian cancer and control cells. The signaling pathway was analyzed by western blotting. STK3 promoted the migration of CD8+ T-cells by activating nuclear transcription factor κB (NF-κB) signaling. STK3 is a potential predictor of OC. It plays an important role in suppressing tumor growth of ovarian cancer and in chemotaxis of CD8+ T-cells.http://dx.doi.org/10.1155/2020/7263602 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xiangyu Wang Fengmian Wang Zhi-Gang Zhang Xiao-Mei Yang Rong Zhang |
spellingShingle |
Xiangyu Wang Fengmian Wang Zhi-Gang Zhang Xiao-Mei Yang Rong Zhang STK3 Suppresses Ovarian Cancer Progression by Activating NF-κB Signaling to Recruit CD8+ T-Cells Journal of Immunology Research |
author_facet |
Xiangyu Wang Fengmian Wang Zhi-Gang Zhang Xiao-Mei Yang Rong Zhang |
author_sort |
Xiangyu Wang |
title |
STK3 Suppresses Ovarian Cancer Progression by Activating NF-κB Signaling to Recruit CD8+ T-Cells |
title_short |
STK3 Suppresses Ovarian Cancer Progression by Activating NF-κB Signaling to Recruit CD8+ T-Cells |
title_full |
STK3 Suppresses Ovarian Cancer Progression by Activating NF-κB Signaling to Recruit CD8+ T-Cells |
title_fullStr |
STK3 Suppresses Ovarian Cancer Progression by Activating NF-κB Signaling to Recruit CD8+ T-Cells |
title_full_unstemmed |
STK3 Suppresses Ovarian Cancer Progression by Activating NF-κB Signaling to Recruit CD8+ T-Cells |
title_sort |
stk3 suppresses ovarian cancer progression by activating nf-κb signaling to recruit cd8+ t-cells |
publisher |
Hindawi Limited |
series |
Journal of Immunology Research |
issn |
2314-8861 2314-7156 |
publishDate |
2020-01-01 |
description |
Serine/threonine protein kinase-3 (STK3) is a critical molecule of the Hippo pathway but little is known about its biological functions in the ovarian cancer development. We demonstrated the roles of STK3 in ovarian cancer. Existing databases were used to study the expression profile of STK3. STK3 was significantly downregulated in OC patients, and the low STK3 expression was correlated with a poor prognosis. In vitro cell proliferation, apoptosis, and migration assays, and in vivo subcutaneous xenograft tumor models were used to determine the roles of STK3. The overexpression of STK3 significantly inhibited cell proliferation, apoptosis, and migration of ovarian cancer cells in vitro and tumor growth in vivo. Bisulfite sequencing PCR analysis was performed to validate the methylation of STK3 in ovarian cancer. RNA sequencing and gene set enrichment analysis (GSEA) were used to compare the transcriptome changes in the STK3 overexpression ovarian cancer and control cells. The signaling pathway was analyzed by western blotting. STK3 promoted the migration of CD8+ T-cells by activating nuclear transcription factor κB (NF-κB) signaling. STK3 is a potential predictor of OC. It plays an important role in suppressing tumor growth of ovarian cancer and in chemotaxis of CD8+ T-cells. |
url |
http://dx.doi.org/10.1155/2020/7263602 |
work_keys_str_mv |
AT xiangyuwang stk3suppressesovariancancerprogressionbyactivatingnfkbsignalingtorecruitcd8tcells AT fengmianwang stk3suppressesovariancancerprogressionbyactivatingnfkbsignalingtorecruitcd8tcells AT zhigangzhang stk3suppressesovariancancerprogressionbyactivatingnfkbsignalingtorecruitcd8tcells AT xiaomeiyang stk3suppressesovariancancerprogressionbyactivatingnfkbsignalingtorecruitcd8tcells AT rongzhang stk3suppressesovariancancerprogressionbyactivatingnfkbsignalingtorecruitcd8tcells |
_version_ |
1715087797794111488 |