Summary: | Fractional vegetation cover (FVC) is one of the most critical parameters in monitoring vegetation status. Accurate estimates of FVC are crucial to the use in land surface models. The dimidiate pixel model is the most widely used method for retrieval of FVC. The normalized difference vegetation index (NDVI) of bare soil endmember (NDVIsoil) is usually assumed to be invariant without taking into account the spatial variability of soil backgrounds. Two NDVIsoil determining methods were compared for estimating FVC. The first method used an invariant NDVIsoil for the Northeast China. The second method used the historical minimum NDVI along with information on soil types to estimate NDVIsoil for each soil type. We quantified the influence of variations of NDVIsoil derived from the second method on FVC estimation for each soil type and compared the differences in FVC estimated by these two methods. Analysis shows that the uncertainty in FVC estimation introduced by NDVIsoil variability can exceed 0.1 (root mean square error—RMSE), with the largest errors occurring in vegetation types with low NDVI. NDVIsoil with higher variation causes greater uncertainty on FVC. The difference between the two versions of FVC in Northeast China, is about 0.07 with an RMSE of 0.07. Validation using fine-resolution FVC reference maps shows that the second approach yields better estimates of FVC than using an invariant NDVIsoil value. The accuracy of FVC estimates is improved from 0.1 to 0.07 (RMSE), on average, in the croplands and from 0.04 to 0.03 in the grasslands. Soil backgrounds have impacts not only on NDVIsoil but also on other VIsoil. Further focus will be the selection of optimal vegetation indices and the modeling of the relationships between VIsoil and soil properties for predicting VIsoil.
|