Spin-polarized two-dimensional electron/hole gases on LiCoO$_2$ layers.
First-principles calculations show the formation of a 2D spin polarized electron (hole) gas on the Li (CoO$_2$) terminated surfaces of finite slabs down to a monolayer, in remarkable contrast with the bulk band structure, which is stabilized by Li donating its electron to the CoO$_2$ layer forming...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SciPost
2021-03-01
|
Series: | SciPost Physics |
Online Access: | https://scipost.org/SciPostPhys.10.3.057 |
Summary: | First-principles calculations show the formation of a 2D spin polarized electron (hole) gas on the Li (CoO$_2$) terminated surfaces of finite slabs down to a monolayer, in remarkable contrast with the bulk band structure, which is stabilized by Li donating its electron to the CoO$_2$ layer forming a Co-$d-t_{2g}^6$ insulator. By mapping the first-principles computational results to a minimal tight-binding models corresponding to a non-chiral 3D generalization of the quadripartite Su-Schrieffer-Heeger (SSH4) model and symmetry analysis, we show that these surface states have topological origin. |
---|---|
ISSN: | 2542-4653 |