In Silico Prediction of Evolutionarily Conserved GC-Rich Elements Associated with Antigenic Proteins of Plasmodium falciparum

The Plasmodium falciparum genome being AT-rich, the presence of GC-rich regions suggests functional significance. Evolution imposes selection pressure to retain functionally important coding and regulatory elements. Hence searching for evolutionarily conserved GC-rich, intergenic regions in an AT-ri...

Full description

Bibliographic Details
Main Authors: Porkodi Panneerselvam, Praveen Bawankar, Surashree Kulkarni, Swati Patankar
Format: Article
Language:English
Published: SAGE Publishing 2011-01-01
Series:Evolutionary Bioinformatics
Online Access:https://doi.org/10.4137/EBO.S8162
Description
Summary:The Plasmodium falciparum genome being AT-rich, the presence of GC-rich regions suggests functional significance. Evolution imposes selection pressure to retain functionally important coding and regulatory elements. Hence searching for evolutionarily conserved GC-rich, intergenic regions in an AT-rich genome will help in discovering new coding regions and regulatory elements. We have used elevated GC content in intergenic regions coupled with sequence conservation against P. reichenowi , which is evolutionarily closely related to P. falciparum to identify potential sequences of functional importance. Interestingly, ∼30% of the GC-rich, conserved sequences were associated with antigenic proteins encoded by var and rifin genes. The majority of sequences identified in the 5′ UTR of var genes are represented by short expressed sequence tags (ESTs) in cDNA libraries signifying that they are transcribed in the parasite. Additionally, 19 sequences were located in the 3′ UTR of rifins and 4 also have overlapping ESTs. Further analysis showed that several sequences associated with var genes have the capacity to encode small peptides. A previous report has shown that upstream peptides can regulate the expression of var genes hence we propose that these conserved GC-rich sequences may play roles in regulation of gene expression.
ISSN:1176-9343