On the Kelvin Transformation in Finite Difference Implementations

Finite difference operators were applied on a Delaunay mesh. This way it is possible to discretize a radial boundary that is used to perform a Kelvin mapping of an additional outer domain to virtually extend the computation domain to infinity. With an example two-wire problem, the performance of thi...

Full description

Bibliographic Details
Main Author: Gerald Gold
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/9/3/442
Description
Summary:Finite difference operators were applied on a Delaunay mesh. This way it is possible to discretize a radial boundary that is used to perform a Kelvin mapping of an additional outer domain to virtually extend the computation domain to infinity. With an example two-wire problem, the performance of this approach is shown in comparison with a conventional calculation domain and with the analytical solution, respectively. The presented implementation delivers a more precise approximation to the real values and at the same time requires a smaller system of equations—i.e., allows for faster computations.
ISSN:2079-9292