The antibody genetics of multiple sclerosis: comparing next-generation sequencing to Sanger sequencing
We previously identified a distinct mutation pattern in the antibody genes of B cells isolated from cerebrospinal fluid (CSF) that can identify patients who have relapsing-remitting multiple sclerosis (RRMS) and patients with clinically isolated syndromes (CIS) that will convert to RRMS. This antibo...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2014-09-01
|
Series: | Frontiers in Neurology |
Subjects: | |
Online Access: | http://journal.frontiersin.org/Journal/10.3389/fneur.2014.00166/full |
id |
doaj-9ef7a49fa13741a19c0d357aeeaa1c19 |
---|---|
record_format |
Article |
spelling |
doaj-9ef7a49fa13741a19c0d357aeeaa1c192020-11-24T23:38:40ZengFrontiers Media S.A.Frontiers in Neurology1664-22952014-09-01510.3389/fneur.2014.0016696826The antibody genetics of multiple sclerosis: comparing next-generation sequencing to Sanger sequencingWilliam eRounds0Ann eLigocki1Mikhail eLevin2Benjamin eGreenberg3Doug eBigwood4Eric eEastman5Lindsay eCowell6Nancy eMonson7Nancy eMonson8University of Texas Southwestern Medical CenterUniversity of Texas Southwestern Medical CenterUT Southwestern Medical CenterUniversity of Texas Southwestern Medical CenterDioGenix, Inc.DioGenix, Inc.UT Southwestern Medical CenterUniversity of Texas Southwestern Medical CenterUT Southwestern Medical CenterWe previously identified a distinct mutation pattern in the antibody genes of B cells isolated from cerebrospinal fluid (CSF) that can identify patients who have relapsing-remitting multiple sclerosis (RRMS) and patients with clinically isolated syndromes (CIS) that will convert to RRMS. This antibody gene signature (AGS) was developed using Sanger sequencing of single B cells. While potentially helpful to patients, Sanger sequencing is not an assay that can be practically deployed into clinic settings. In order to provide AGS evaluations to patients as part of their diagnostic workup, we developed protocols to generate AGS scores using next-generation sequencing (NGS) on CSF-derived cell pellets without the need to isolate single cells. This approach has the potential to increase the coverage of the B cell population being analyzed, reduce the time needed to generate AGS scores, and may improve the overall performance of the AGS approach as a diagnostic test in the future.However, no investigations have focused on whether NGS-based repertoires will properly reflect antibody gene frequencies and somatic hypermutation patterns defined by Sanger sequencing. To address this issue, we were able to isolate paired CSF samples from 8 patients who either had MS or were at risk to develop MS. Here we present data that antibody gene frequencies and somatic hypermutation patterns are similar in Sanger and NGS-based antibody repertoires from these paired CSF samples. In addition, AGS scores derived from the NGS database correctly identified the patients who initially had or subsequently converted to RRMS, with similar precision as the Sanger sequencing approach. Further investigation of the utility of the AGS in predicting conversion to MS using NGS-derived antibody repertoires in a larger cohort of patients is warranted.http://journal.frontiersin.org/Journal/10.3389/fneur.2014.00166/fullMultiple SclerosisB cellNext-generation sequencingantibodyRoche 454 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
William eRounds Ann eLigocki Mikhail eLevin Benjamin eGreenberg Doug eBigwood Eric eEastman Lindsay eCowell Nancy eMonson Nancy eMonson |
spellingShingle |
William eRounds Ann eLigocki Mikhail eLevin Benjamin eGreenberg Doug eBigwood Eric eEastman Lindsay eCowell Nancy eMonson Nancy eMonson The antibody genetics of multiple sclerosis: comparing next-generation sequencing to Sanger sequencing Frontiers in Neurology Multiple Sclerosis B cell Next-generation sequencing antibody Roche 454 |
author_facet |
William eRounds Ann eLigocki Mikhail eLevin Benjamin eGreenberg Doug eBigwood Eric eEastman Lindsay eCowell Nancy eMonson Nancy eMonson |
author_sort |
William eRounds |
title |
The antibody genetics of multiple sclerosis: comparing next-generation sequencing to Sanger sequencing |
title_short |
The antibody genetics of multiple sclerosis: comparing next-generation sequencing to Sanger sequencing |
title_full |
The antibody genetics of multiple sclerosis: comparing next-generation sequencing to Sanger sequencing |
title_fullStr |
The antibody genetics of multiple sclerosis: comparing next-generation sequencing to Sanger sequencing |
title_full_unstemmed |
The antibody genetics of multiple sclerosis: comparing next-generation sequencing to Sanger sequencing |
title_sort |
antibody genetics of multiple sclerosis: comparing next-generation sequencing to sanger sequencing |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Neurology |
issn |
1664-2295 |
publishDate |
2014-09-01 |
description |
We previously identified a distinct mutation pattern in the antibody genes of B cells isolated from cerebrospinal fluid (CSF) that can identify patients who have relapsing-remitting multiple sclerosis (RRMS) and patients with clinically isolated syndromes (CIS) that will convert to RRMS. This antibody gene signature (AGS) was developed using Sanger sequencing of single B cells. While potentially helpful to patients, Sanger sequencing is not an assay that can be practically deployed into clinic settings. In order to provide AGS evaluations to patients as part of their diagnostic workup, we developed protocols to generate AGS scores using next-generation sequencing (NGS) on CSF-derived cell pellets without the need to isolate single cells. This approach has the potential to increase the coverage of the B cell population being analyzed, reduce the time needed to generate AGS scores, and may improve the overall performance of the AGS approach as a diagnostic test in the future.However, no investigations have focused on whether NGS-based repertoires will properly reflect antibody gene frequencies and somatic hypermutation patterns defined by Sanger sequencing. To address this issue, we were able to isolate paired CSF samples from 8 patients who either had MS or were at risk to develop MS. Here we present data that antibody gene frequencies and somatic hypermutation patterns are similar in Sanger and NGS-based antibody repertoires from these paired CSF samples. In addition, AGS scores derived from the NGS database correctly identified the patients who initially had or subsequently converted to RRMS, with similar precision as the Sanger sequencing approach. Further investigation of the utility of the AGS in predicting conversion to MS using NGS-derived antibody repertoires in a larger cohort of patients is warranted. |
topic |
Multiple Sclerosis B cell Next-generation sequencing antibody Roche 454 |
url |
http://journal.frontiersin.org/Journal/10.3389/fneur.2014.00166/full |
work_keys_str_mv |
AT williamerounds theantibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT anneligocki theantibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT mikhailelevin theantibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT benjaminegreenberg theantibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT dougebigwood theantibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT ericeeastman theantibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT lindsayecowell theantibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT nancyemonson theantibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT nancyemonson theantibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT williamerounds antibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT anneligocki antibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT mikhailelevin antibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT benjaminegreenberg antibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT dougebigwood antibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT ericeeastman antibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT lindsayecowell antibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT nancyemonson antibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing AT nancyemonson antibodygeneticsofmultiplesclerosiscomparingnextgenerationsequencingtosangersequencing |
_version_ |
1725516424516993024 |