Comparison of three statistical methods for earthquake-induced landslides susceptibility in Lushan region China
This paper adopts three models including the logistic regression (LR), support vector machine (SVM), and random forest (RF) to study the susceptibility distribution rule of susceptibility distribution of earthquakes induced landslides. The Area Under the Receiver Operating Characteristic (ROC) curve...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
EDP Sciences
2020-01-01
|
Series: | E3S Web of Conferences |
Online Access: | https://www.e3s-conferences.org/articles/e3sconf/pdf/2020/58/e3sconf_isceg2020_02024.pdf |
Summary: | This paper adopts three models including the logistic regression (LR), support vector machine (SVM), and random forest (RF) to study the susceptibility distribution rule of susceptibility distribution of earthquakes induced landslides. The Area Under the Receiver Operating Characteristic (ROC) curve (AUC) and Ratio were used for evaluating the model’s accuracy and mapping availability susceptibility assessment. The result shows that RF has the best performance in the susceptibility assessment of earthquake-induced landslides in the Lushan region of China. |
---|---|
ISSN: | 2267-1242 |