Variation of the interphase heterochromatin in Artemia (Crustacea, Anostraca) of the Americas is related to changes in nuclear size and ionic composition of hipersaline habitats

Abstract The populations of Artemia (or brine shrimp) from the Americas exhibit a wide variation in the amount of interphase heterochromatin. There is interest in understanding how this variation affects different parameters, from the cellular to the organismal levels. This should help to clarify th...

Full description

Bibliographic Details
Main Authors: M. Parraguez, G. Gajardo
Format: Article
Language:English
Published: Instituto Internacional de Ecologia
Series:Brazilian Journal of Biology
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1519-69842017005101101&lng=en&tlng=en
Description
Summary:Abstract The populations of Artemia (or brine shrimp) from the Americas exhibit a wide variation in the amount of interphase heterochromatin. There is interest in understanding how this variation affects different parameters, from the cellular to the organismal levels. This should help to clarify the ability of this organism to tolerate brine habitats regularly subject to strong abiotic changes. In this study, we assessed the amount of interphase heterochromatin per nucleus based on chromocenter number (N-CHR) and relative area of chromocenter (R-CHR) in two species of Artemia, A. franciscana (Kellog, 1906) (n=9 populations) and A. persimilis (Piccinelli and Prosdocimi, 1968) (n=3 populations), to investigate the effect on nuclear size (S-NUC). The relationship of the R-CHR parameter with the ionic composition (IC) of brine habitats was also analysed. Our results indicate a significant variation in the amount of heterochromatin both within and between species (ANOVA, p<0.001). The heterochromatin varied from 0.81 ± 1.17 to 12.58 ± 3.78 and from 0.19 ± 0.34% to 11.78 ± 3.71% across all populations, for N-CHR and R-CHR parameters, respectively. N-CHR showed less variation than R-CHR (variation index 15.5-fold vs. 62-fold). At least five populations showed a significant association (p<0.05) between R-CHR and S-NUC, either with negative (four populations, r= from -0.643 to -0.443), or positive (one population, r= 0.367) values.Within each species, there were no significant associations between both parameters (p>0.05). The R-CHR and IC parameters were associated significantly for the magnesium ion (r= 0.496, p<0.05) and also for the chloride, sodium and calcium ions (r = from -0.705 to -0.478, p<0.05). At species level, a significant association between both parameters was also found in A. franciscana populations, for the sulphate and calcium ions, in contrast to A. persimilis. These findings suggest that the amount of interphase heterochromatin modifies the nuclear size in Artemia. Our data also indicate that change in the amount of interphase heterochromatin is in line with the ionic composition of brines. This would be a species-specific phenomenon, whose occurrence may be involved in the ability of this organism to survive in these environments.
ISSN:1678-4375