CAPTCHA Recognition Method Based on CNN with Focal Loss

In order to distinguish between computers and humans, CAPTCHA is widely used in links such as website login and registration. The traditional CAPTCHA recognition method has poor recognition ability and robustness to different types of verification codes. For this reason, the paper proposes a CAPTCHA...

Full description

Bibliographic Details
Main Authors: Zhong Wang, Peibei Shi
Format: Article
Language:English
Published: Hindawi-Wiley 2021-01-01
Series:Complexity
Online Access:http://dx.doi.org/10.1155/2021/6641329
Description
Summary:In order to distinguish between computers and humans, CAPTCHA is widely used in links such as website login and registration. The traditional CAPTCHA recognition method has poor recognition ability and robustness to different types of verification codes. For this reason, the paper proposes a CAPTCHA recognition method based on convolutional neural network with focal loss function. This method improves the traditional VGG network structure and introduces the focal loss function to generate a new CAPTCHA recognition model. First, we perform preprocessing such as grayscale, binarization, denoising, segmentation, and annotation and then use the Keras library to build a simple neural network model. In addition, we build a terminal end-to-end neural network model for recognition for complex CAPTCHA with high adhesion and more interference pixel. By testing the CNKI CAPTCHA, Zhengfang CAPTCHA, and randomly generated CAPTCHA, the experimental results show that the proposed method has a better recognition effect and robustness for three different datasets, and it has certain advantages compared with traditional deep learning methods. The recognition rate is 99%, 98.5%, and 97.84%, respectively.
ISSN:1076-2787
1099-0526