The C-terminus of the retinal homeobox (rax) gene product modulates transcription in a context-dependent manner

Purpose: The evolutionarily conserved retinal homeobox (Rax) transcription factor is essential for normal eye development in all vertebrates. Despite Rax’s biologic significance, the molecular mechanisms underlying Rax molecular function as a transcriptional regulator are poorly defined. The rax gen...

Full description

Bibliographic Details
Main Authors: Jessica L. Buescher, Heithem M. El-Hodiri
Format: Article
Language:English
Published: Molecular Vision 2019-02-01
Series:Molecular Vision
Subjects:
Online Access:http://www.molvis.org/molvis/v25/165/
id doaj-9ede55c38b4e4a8cb6b2f3c0a9eba100
record_format Article
spelling doaj-9ede55c38b4e4a8cb6b2f3c0a9eba1002020-11-25T00:01:43ZengMolecular VisionMolecular Vision1090-05351090-05352019-02-01251165173The C-terminus of the retinal homeobox (rax) gene product modulates transcription in a context-dependent manner Jessica L. Buescher0Heithem M. El-Hodiri1Center for Molecular and Human Genetics, Nationwide Children’s Research Institute, Columbus, OHDepartment of Pediatrics, College of Medicine, The Ohio State University, Columbus, OHPurpose: The evolutionarily conserved retinal homeobox (Rax) transcription factor is essential for normal eye development in all vertebrates. Despite Rax’s biologic significance, the molecular mechanisms underlying Rax molecular function as a transcriptional regulator are poorly defined. The rax gene encodes a conserved octapeptide motif (OP) near the N-terminus and several conserved regions in the C-terminus of unknown function, including the orthopedia, aristaless, rax (OAR) domain and the RX domain. The purpose of this study is to investigate the contribution of these conserved domains in Rax function. Methods: N-and C-terminal deletion and point mutations were generated in Xenopus laevis rax.L (previously known as Rx1A) using PCR-based methods. We examined the ability of mutated Rax to transactivate a reporter gene consisting of a portion of a rax target gene promoter (from the Xenopus rhodopsin gene) fused to a firefly luciferase coding region and transfected into human embryonic kidney 293T (HEK293T) cells. Portions of the Rax C-terminal region were also assayed for transactivation activity in the context of a heterologous DNA binding domain with an appropriate reporter gene. Results: Full-length Rax weakly activated the reporter. Deletion of the Rax C-terminus increased Rax activity, suggesting that the C-terminus functions to repress Rax activity. Further deletion eventually resulted in a decrease in activity, suggesting that the C-terminal region also can function to enhance Rax activity. Deletion or mutation of the OP motif resulted in a slight decrease in Rax activity. Mutation or deletion of the N-terminal OP motif resulted in a mild decrease in activity and dampened the activity levels of the C-terminal deletions. Further, fusion of the C-terminus of Rax to a heterologous DNA binding domain enhanced transactivation. Conclusions: The present data indicate that the C-terminus of Rax can function to repress or activate transcription in a context-dependent manner. These data support our hypothesis that the highly conserved OAR domain, in combination with other regulatory elements in the Rax C-terminus, coordinates Rax activity, perhaps through functional interaction with the N-terminal OP motif. Taken together, these data provide insight into the structural features that regulate Rax activity. http://www.molvis.org/molvis/v25/165/retinal homeoboxoctapeptide motif
collection DOAJ
language English
format Article
sources DOAJ
author Jessica L. Buescher
Heithem M. El-Hodiri
spellingShingle Jessica L. Buescher
Heithem M. El-Hodiri
The C-terminus of the retinal homeobox (rax) gene product modulates transcription in a context-dependent manner
Molecular Vision
retinal homeobox
octapeptide motif
author_facet Jessica L. Buescher
Heithem M. El-Hodiri
author_sort Jessica L. Buescher
title The C-terminus of the retinal homeobox (rax) gene product modulates transcription in a context-dependent manner
title_short The C-terminus of the retinal homeobox (rax) gene product modulates transcription in a context-dependent manner
title_full The C-terminus of the retinal homeobox (rax) gene product modulates transcription in a context-dependent manner
title_fullStr The C-terminus of the retinal homeobox (rax) gene product modulates transcription in a context-dependent manner
title_full_unstemmed The C-terminus of the retinal homeobox (rax) gene product modulates transcription in a context-dependent manner
title_sort c-terminus of the retinal homeobox (rax) gene product modulates transcription in a context-dependent manner
publisher Molecular Vision
series Molecular Vision
issn 1090-0535
1090-0535
publishDate 2019-02-01
description Purpose: The evolutionarily conserved retinal homeobox (Rax) transcription factor is essential for normal eye development in all vertebrates. Despite Rax’s biologic significance, the molecular mechanisms underlying Rax molecular function as a transcriptional regulator are poorly defined. The rax gene encodes a conserved octapeptide motif (OP) near the N-terminus and several conserved regions in the C-terminus of unknown function, including the orthopedia, aristaless, rax (OAR) domain and the RX domain. The purpose of this study is to investigate the contribution of these conserved domains in Rax function. Methods: N-and C-terminal deletion and point mutations were generated in Xenopus laevis rax.L (previously known as Rx1A) using PCR-based methods. We examined the ability of mutated Rax to transactivate a reporter gene consisting of a portion of a rax target gene promoter (from the Xenopus rhodopsin gene) fused to a firefly luciferase coding region and transfected into human embryonic kidney 293T (HEK293T) cells. Portions of the Rax C-terminal region were also assayed for transactivation activity in the context of a heterologous DNA binding domain with an appropriate reporter gene. Results: Full-length Rax weakly activated the reporter. Deletion of the Rax C-terminus increased Rax activity, suggesting that the C-terminus functions to repress Rax activity. Further deletion eventually resulted in a decrease in activity, suggesting that the C-terminal region also can function to enhance Rax activity. Deletion or mutation of the OP motif resulted in a slight decrease in Rax activity. Mutation or deletion of the N-terminal OP motif resulted in a mild decrease in activity and dampened the activity levels of the C-terminal deletions. Further, fusion of the C-terminus of Rax to a heterologous DNA binding domain enhanced transactivation. Conclusions: The present data indicate that the C-terminus of Rax can function to repress or activate transcription in a context-dependent manner. These data support our hypothesis that the highly conserved OAR domain, in combination with other regulatory elements in the Rax C-terminus, coordinates Rax activity, perhaps through functional interaction with the N-terminal OP motif. Taken together, these data provide insight into the structural features that regulate Rax activity.
topic retinal homeobox
octapeptide motif
url http://www.molvis.org/molvis/v25/165/
work_keys_str_mv AT jessicalbuescher thecterminusoftheretinalhomeoboxraxgeneproductmodulatestranscriptioninacontextdependentmanner
AT heithemmelhodiri thecterminusoftheretinalhomeoboxraxgeneproductmodulatestranscriptioninacontextdependentmanner
AT jessicalbuescher cterminusoftheretinalhomeoboxraxgeneproductmodulatestranscriptioninacontextdependentmanner
AT heithemmelhodiri cterminusoftheretinalhomeoboxraxgeneproductmodulatestranscriptioninacontextdependentmanner
_version_ 1725440862954979328