Preparation of Layer-by-Layer Films Composed of Polysaccharides and Poly(Amidoamine) Dendrimer Bearing Phenylboronic Acid and Their pH- and Sugar-Dependent Stability

Layer-by-layer films composed of polysaccharides and poly(amidoamine) dendrimer bearing phenylboronic acid (PBA-PAMAM) were prepared to study the deposition behavior of the films and their stability in buffer solutions and in sugar solutions. Alginic acid (AGA) and carboxymethylcellulose (CMC) were...

Full description

Bibliographic Details
Main Authors: Kentaro Yoshida, Keisuke Suwa, Jun-ichi Anzai
Format: Article
Language:English
Published: MDPI AG 2016-05-01
Series:Materials
Subjects:
Online Access:http://www.mdpi.com/1996-1944/9/6/425
Description
Summary:Layer-by-layer films composed of polysaccharides and poly(amidoamine) dendrimer bearing phenylboronic acid (PBA-PAMAM) were prepared to study the deposition behavior of the films and their stability in buffer solutions and in sugar solutions. Alginic acid (AGA) and carboxymethylcellulose (CMC) were employed as counter-polymers in constructing LbL films. AGA/PBA-PAMAM films were successfully prepared at pH 6.0–9.0, whereas the preparation of CMC/PBA-PAMAM film was unsuccessful at pH 8.0 and 9.0. The results show that the LbL films formed mainly through electrostatic affinity between PBA-PAMAM and polysaccharides, while, for AGA/PBA-PAMAM films, the participation of boronate ester bonds in the films was suggested. AGA/PBA-PAMAM films were stable in the solutions of pH 6.0–9.0. In contrast, CMC/PBA-PAMAM films decomposed at pH 7.5–9.0. The AGA/PBA-PAMAM films decomposed in response to 5–30 mM fructose at pH 7.5, while the films were stable in glucose solutions. Thus, AGA is useful as a counter-polymer for constructing PBA-PAMAM films that are stable at physiological pH and decompose in response to fructose.
ISSN:1996-1944