Triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake system

<p>This study investigates the combined hydrogen deuterium and triple oxygen isotope hydrology of the Salar del Huasco, an endorheic salt flat with shallow lakes at its centre that is located on the Altiplano Plateau, N Chile. This lacustrine system is hydrologically dynamic and complex becaus...

Full description

Bibliographic Details
Main Authors: C. Voigt, D. Herwartz, C. Dorador, M. Staubwasser
Format: Article
Language:English
Published: Copernicus Publications 2021-03-01
Series:Hydrology and Earth System Sciences
Online Access:https://hess.copernicus.org/articles/25/1211/2021/hess-25-1211-2021.pdf
id doaj-9e909564d3214496ae930075a779d1a6
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author C. Voigt
C. Voigt
D. Herwartz
C. Dorador
M. Staubwasser
spellingShingle C. Voigt
C. Voigt
D. Herwartz
C. Dorador
M. Staubwasser
Triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake system
Hydrology and Earth System Sciences
author_facet C. Voigt
C. Voigt
D. Herwartz
C. Dorador
M. Staubwasser
author_sort C. Voigt
title Triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake system
title_short Triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake system
title_full Triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake system
title_fullStr Triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake system
title_full_unstemmed Triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake system
title_sort triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake system
publisher Copernicus Publications
series Hydrology and Earth System Sciences
issn 1027-5606
1607-7938
publishDate 2021-03-01
description <p>This study investigates the combined hydrogen deuterium and triple oxygen isotope hydrology of the Salar del Huasco, an endorheic salt flat with shallow lakes at its centre that is located on the Altiplano Plateau, N Chile. This lacustrine system is hydrologically dynamic and complex because it receives inflow from multiple surface and groundwater sources. It undergoes seasonal flooding, followed by rapid shrinking of the water body at the prevailing arid climate with very high evaporation rates. At any given point in time, ponds, lakes, and recharge sources capture a large range of evaporation degrees. Samples taken between 2017 and 2019 show a range of <span class="inline-formula"><i>δ</i><sup>18</sup></span>O between <span class="inline-formula">−13.3</span> ‰ and 14.5 ‰, d-excess between 7 ‰ and <span class="inline-formula">−100</span> ‰, and <span class="inline-formula"><sup>17</sup></span>O-excess between 19 and <span class="inline-formula">−108</span> per meg. A pan evaporation experiment conducted on-site was used to derive the turbulence coefficient of the Craig–Gordon isotope evaporation model for the local wind regime. This, along with sampling of atmospheric vapour at the salar (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">21.0</mn><mo>±</mo><mn mathvariant="normal">3.3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="53283b99f13c535b38a04b1a3307454f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-25-1211-2021-ie00001.svg" width="58pt" height="10pt" src="hess-25-1211-2021-ie00001.png"/></svg:svg></span></span> ‰ for <span class="inline-formula"><i>δ</i><sup>18</sup></span>O, <span class="inline-formula">34±6</span> ‰ for d-excess and <span class="inline-formula">23±9</span> per meg for <span class="inline-formula"><sup>17</sup></span>O-excess), enabled the accurate reproduction of measured ponds and lake isotope data by the Craig–Gordon model. In contrast to classic <span class="inline-formula"><i>δ</i><sup>2</sup></span>H–<span class="inline-formula"><i>δ</i><sup>18</sup></span>O studies, the <span class="inline-formula"><sup>17</sup></span>O-excess data not only allow one to distinguish two different types of evaporation – evaporation with and without recharge – but also to identify mixing processes between evaporated lake water and fresh flood water. Multiple generations of infiltration events can also be inferred from the triple oxygen isotope composition of inflow water, indicating mixing of sources with different evaporation histories. These processes cannot be resolved using classic <span class="inline-formula"><i>δ</i><sup>2</sup></span>H–<span class="inline-formula"><i>δ</i><sup>18</sup></span>O data alone. Adding triple oxygen isotope measurements to isotope hydrology studies may therefore significantly improve the accuracy of a lake's hydrological balance – i.e. the evaporation-to-inflow ratio (E <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c6f00d13d95b9183e3e2526db4298e27"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-25-1211-2021-ie00002.svg" width="8pt" height="14pt" src="hess-25-1211-2021-ie00002.png"/></svg:svg></span></span> I) – estimated by water isotope data and application of the Craig–Gordon isotope evaporation model.</p>
url https://hess.copernicus.org/articles/25/1211/2021/hess-25-1211-2021.pdf
work_keys_str_mv AT cvoigt tripleoxygenisotopesystematicsofevaporationandmixingprocessesinadynamicdesertlakesystem
AT cvoigt tripleoxygenisotopesystematicsofevaporationandmixingprocessesinadynamicdesertlakesystem
AT dherwartz tripleoxygenisotopesystematicsofevaporationandmixingprocessesinadynamicdesertlakesystem
AT cdorador tripleoxygenisotopesystematicsofevaporationandmixingprocessesinadynamicdesertlakesystem
AT mstaubwasser tripleoxygenisotopesystematicsofevaporationandmixingprocessesinadynamicdesertlakesystem
_version_ 1724226837953904640
spelling doaj-9e909564d3214496ae930075a779d1a62021-03-10T10:24:23ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382021-03-01251211122810.5194/hess-25-1211-2021Triple oxygen isotope systematics of evaporation and mixing processes in a dynamic desert lake systemC. Voigt0C. Voigt1D. Herwartz2C. Dorador3M. Staubwasser4Institute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, GermanyAix Marseille University, Centre National de la Recherche Scientifique (CNRS), CEREGE, Aix-en-Provence, FranceInstitute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, GermanyCentro de Biotecnología, Universidad de Antofagasta, Angamos 601, 1270300 Antofagasta, ChileInstitute of Geology and Mineralogy, University of Cologne, Zülpicher Str. 49b, 50674 Cologne, Germany<p>This study investigates the combined hydrogen deuterium and triple oxygen isotope hydrology of the Salar del Huasco, an endorheic salt flat with shallow lakes at its centre that is located on the Altiplano Plateau, N Chile. This lacustrine system is hydrologically dynamic and complex because it receives inflow from multiple surface and groundwater sources. It undergoes seasonal flooding, followed by rapid shrinking of the water body at the prevailing arid climate with very high evaporation rates. At any given point in time, ponds, lakes, and recharge sources capture a large range of evaporation degrees. Samples taken between 2017 and 2019 show a range of <span class="inline-formula"><i>δ</i><sup>18</sup></span>O between <span class="inline-formula">−13.3</span> ‰ and 14.5 ‰, d-excess between 7 ‰ and <span class="inline-formula">−100</span> ‰, and <span class="inline-formula"><sup>17</sup></span>O-excess between 19 and <span class="inline-formula">−108</span> per meg. A pan evaporation experiment conducted on-site was used to derive the turbulence coefficient of the Craig–Gordon isotope evaporation model for the local wind regime. This, along with sampling of atmospheric vapour at the salar (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">21.0</mn><mo>±</mo><mn mathvariant="normal">3.3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="58pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="53283b99f13c535b38a04b1a3307454f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-25-1211-2021-ie00001.svg" width="58pt" height="10pt" src="hess-25-1211-2021-ie00001.png"/></svg:svg></span></span> ‰ for <span class="inline-formula"><i>δ</i><sup>18</sup></span>O, <span class="inline-formula">34±6</span> ‰ for d-excess and <span class="inline-formula">23±9</span> per meg for <span class="inline-formula"><sup>17</sup></span>O-excess), enabled the accurate reproduction of measured ponds and lake isotope data by the Craig–Gordon model. In contrast to classic <span class="inline-formula"><i>δ</i><sup>2</sup></span>H–<span class="inline-formula"><i>δ</i><sup>18</sup></span>O studies, the <span class="inline-formula"><sup>17</sup></span>O-excess data not only allow one to distinguish two different types of evaporation – evaporation with and without recharge – but also to identify mixing processes between evaporated lake water and fresh flood water. Multiple generations of infiltration events can also be inferred from the triple oxygen isotope composition of inflow water, indicating mixing of sources with different evaporation histories. These processes cannot be resolved using classic <span class="inline-formula"><i>δ</i><sup>2</sup></span>H–<span class="inline-formula"><i>δ</i><sup>18</sup></span>O data alone. Adding triple oxygen isotope measurements to isotope hydrology studies may therefore significantly improve the accuracy of a lake's hydrological balance – i.e. the evaporation-to-inflow ratio (E <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M16" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="c6f00d13d95b9183e3e2526db4298e27"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="hess-25-1211-2021-ie00002.svg" width="8pt" height="14pt" src="hess-25-1211-2021-ie00002.png"/></svg:svg></span></span> I) – estimated by water isotope data and application of the Craig–Gordon isotope evaporation model.</p>https://hess.copernicus.org/articles/25/1211/2021/hess-25-1211-2021.pdf