Existence of solutions for $p(x)$-Laplacian equations
We discuss the problem \begin{equation*} \left\{ \begin{array}{ll} -\operatorname{div}\left( \left\vert \nabla u\right\vert ^{p(x)-2}\nabla u\right) =\lambda (a\left( x\right) \left\vert u\right\vert ^{q(x)-2}u+b(x)\left\vert u\right\vert ^{h(x)-2}u)\text{,} & \text{for }x\in \Omega , \\ u=0\te...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2010-11-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=525 |
id |
doaj-9e80ab2b80704127a143b963e316446f |
---|---|
record_format |
Article |
spelling |
doaj-9e80ab2b80704127a143b963e316446f2021-07-14T07:21:22ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752010-11-0120106511310.14232/ejqtde.2010.1.65525Existence of solutions for $p(x)$-Laplacian equationsRabil Ayazoglu (Mashiyev)0B. Cekic1O. M. Buhrii2Dicle University, Diyarbakir, TurkeyDicle University, Diyarbakir, TurkeyIvan Franko National University of Lviv, Lviv, UkraineWe discuss the problem \begin{equation*} \left\{ \begin{array}{ll} -\operatorname{div}\left( \left\vert \nabla u\right\vert ^{p(x)-2}\nabla u\right) =\lambda (a\left( x\right) \left\vert u\right\vert ^{q(x)-2}u+b(x)\left\vert u\right\vert ^{h(x)-2}u)\text{,} & \text{for }x\in \Omega , \\ u=0\text{,} & \text{for }x\in \partial \Omega . \end{array} \right. \end{equation*} where $\Omega $ is a bounded domain with smooth boundary in $\mathbb{R}^{N}$ $\left( N\geq 2\right)$ and $p$ is Lipschitz continuous, $q$ and $h$ are continuous functions on $\overline{\Omega }$ such that $1<q(x)<p(x)<h(x)<p^{\ast }(x)$ and $p(x)<N$. We show the existence of at least one nontrivial weak solution. Our approach relies on the variable exponent theory of Lebesgue and Sobolev spaces combined with adequate variational methods and the Mountain Pass Theorem.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=525 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Rabil Ayazoglu (Mashiyev) B. Cekic O. M. Buhrii |
spellingShingle |
Rabil Ayazoglu (Mashiyev) B. Cekic O. M. Buhrii Existence of solutions for $p(x)$-Laplacian equations Electronic Journal of Qualitative Theory of Differential Equations |
author_facet |
Rabil Ayazoglu (Mashiyev) B. Cekic O. M. Buhrii |
author_sort |
Rabil Ayazoglu (Mashiyev) |
title |
Existence of solutions for $p(x)$-Laplacian equations |
title_short |
Existence of solutions for $p(x)$-Laplacian equations |
title_full |
Existence of solutions for $p(x)$-Laplacian equations |
title_fullStr |
Existence of solutions for $p(x)$-Laplacian equations |
title_full_unstemmed |
Existence of solutions for $p(x)$-Laplacian equations |
title_sort |
existence of solutions for $p(x)$-laplacian equations |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
2010-11-01 |
description |
We discuss the problem
\begin{equation*}
\left\{
\begin{array}{ll}
-\operatorname{div}\left( \left\vert \nabla u\right\vert ^{p(x)-2}\nabla u\right)
=\lambda (a\left( x\right) \left\vert u\right\vert ^{q(x)-2}u+b(x)\left\vert u\right\vert ^{h(x)-2}u)\text{,} & \text{for }x\in \Omega , \\ u=0\text{,} & \text{for }x\in \partial \Omega .
\end{array}
\right.
\end{equation*}
where $\Omega $ is a bounded domain with smooth boundary in $\mathbb{R}^{N}$ $\left( N\geq 2\right)$ and $p$ is Lipschitz continuous, $q$ and $h$ are continuous functions on $\overline{\Omega }$ such that $1<q(x)<p(x)<h(x)<p^{\ast }(x)$ and $p(x)<N$. We show the existence of at least one nontrivial weak solution. Our approach relies on the variable exponent theory of Lebesgue and Sobolev spaces combined with adequate variational methods and the Mountain Pass Theorem. |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=525 |
work_keys_str_mv |
AT rabilayazoglumashiyev existenceofsolutionsforpxlaplacianequations AT bcekic existenceofsolutionsforpxlaplacianequations AT ombuhrii existenceofsolutionsforpxlaplacianequations |
_version_ |
1721303728625025024 |