Existence of solutions for $p(x)$-Laplacian equations

We discuss the problem \begin{equation*} \left\{ \begin{array}{ll} -\operatorname{div}\left( \left\vert \nabla u\right\vert ^{p(x)-2}\nabla u\right) =\lambda (a\left( x\right) \left\vert u\right\vert ^{q(x)-2}u+b(x)\left\vert u\right\vert ^{h(x)-2}u)\text{,} & \text{for }x\in \Omega , \\ u=0\te...

Full description

Bibliographic Details
Main Authors: Rabil Ayazoglu (Mashiyev), B. Cekic, O. M. Buhrii
Format: Article
Language:English
Published: University of Szeged 2010-11-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=525
id doaj-9e80ab2b80704127a143b963e316446f
record_format Article
spelling doaj-9e80ab2b80704127a143b963e316446f2021-07-14T07:21:22ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38752010-11-0120106511310.14232/ejqtde.2010.1.65525Existence of solutions for $p(x)$-Laplacian equationsRabil Ayazoglu (Mashiyev)0B. Cekic1O. M. Buhrii2Dicle University, Diyarbakir, TurkeyDicle University, Diyarbakir, TurkeyIvan Franko National University of Lviv, Lviv, UkraineWe discuss the problem \begin{equation*} \left\{ \begin{array}{ll} -\operatorname{div}\left( \left\vert \nabla u\right\vert ^{p(x)-2}\nabla u\right) =\lambda (a\left( x\right) \left\vert u\right\vert ^{q(x)-2}u+b(x)\left\vert u\right\vert ^{h(x)-2}u)\text{,} & \text{for }x\in \Omega , \\ u=0\text{,} & \text{for }x\in \partial \Omega . \end{array} \right. \end{equation*} where $\Omega $ is a bounded domain with smooth boundary in $\mathbb{R}^{N}$ $\left( N\geq 2\right)$ and $p$ is Lipschitz continuous, $q$ and $h$ are continuous functions on $\overline{\Omega }$ such that $1<q(x)<p(x)<h(x)<p^{\ast }(x)$ and $p(x)<N$. We show the existence of at least one nontrivial weak solution. Our approach relies on the variable exponent theory of Lebesgue and Sobolev spaces combined with adequate variational methods and the Mountain Pass Theorem.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=525
collection DOAJ
language English
format Article
sources DOAJ
author Rabil Ayazoglu (Mashiyev)
B. Cekic
O. M. Buhrii
spellingShingle Rabil Ayazoglu (Mashiyev)
B. Cekic
O. M. Buhrii
Existence of solutions for $p(x)$-Laplacian equations
Electronic Journal of Qualitative Theory of Differential Equations
author_facet Rabil Ayazoglu (Mashiyev)
B. Cekic
O. M. Buhrii
author_sort Rabil Ayazoglu (Mashiyev)
title Existence of solutions for $p(x)$-Laplacian equations
title_short Existence of solutions for $p(x)$-Laplacian equations
title_full Existence of solutions for $p(x)$-Laplacian equations
title_fullStr Existence of solutions for $p(x)$-Laplacian equations
title_full_unstemmed Existence of solutions for $p(x)$-Laplacian equations
title_sort existence of solutions for $p(x)$-laplacian equations
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 2010-11-01
description We discuss the problem \begin{equation*} \left\{ \begin{array}{ll} -\operatorname{div}\left( \left\vert \nabla u\right\vert ^{p(x)-2}\nabla u\right) =\lambda (a\left( x\right) \left\vert u\right\vert ^{q(x)-2}u+b(x)\left\vert u\right\vert ^{h(x)-2}u)\text{,} & \text{for }x\in \Omega , \\ u=0\text{,} & \text{for }x\in \partial \Omega . \end{array} \right. \end{equation*} where $\Omega $ is a bounded domain with smooth boundary in $\mathbb{R}^{N}$ $\left( N\geq 2\right)$ and $p$ is Lipschitz continuous, $q$ and $h$ are continuous functions on $\overline{\Omega }$ such that $1<q(x)<p(x)<h(x)<p^{\ast }(x)$ and $p(x)<N$. We show the existence of at least one nontrivial weak solution. Our approach relies on the variable exponent theory of Lebesgue and Sobolev spaces combined with adequate variational methods and the Mountain Pass Theorem.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=525
work_keys_str_mv AT rabilayazoglumashiyev existenceofsolutionsforpxlaplacianequations
AT bcekic existenceofsolutionsforpxlaplacianequations
AT ombuhrii existenceofsolutionsforpxlaplacianequations
_version_ 1721303728625025024