Existence of solutions for $p(x)$-Laplacian equations

We discuss the problem \begin{equation*} \left\{ \begin{array}{ll} -\operatorname{div}\left( \left\vert \nabla u\right\vert ^{p(x)-2}\nabla u\right) =\lambda (a\left( x\right) \left\vert u\right\vert ^{q(x)-2}u+b(x)\left\vert u\right\vert ^{h(x)-2}u)\text{,} & \text{for }x\in \Omega , \\ u=0\te...

Full description

Bibliographic Details
Main Authors: Rabil Ayazoglu (Mashiyev), B. Cekic, O. M. Buhrii
Format: Article
Language:English
Published: University of Szeged 2010-11-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=525
Description
Summary:We discuss the problem \begin{equation*} \left\{ \begin{array}{ll} -\operatorname{div}\left( \left\vert \nabla u\right\vert ^{p(x)-2}\nabla u\right) =\lambda (a\left( x\right) \left\vert u\right\vert ^{q(x)-2}u+b(x)\left\vert u\right\vert ^{h(x)-2}u)\text{,} & \text{for }x\in \Omega , \\ u=0\text{,} & \text{for }x\in \partial \Omega . \end{array} \right. \end{equation*} where $\Omega $ is a bounded domain with smooth boundary in $\mathbb{R}^{N}$ $\left( N\geq 2\right)$ and $p$ is Lipschitz continuous, $q$ and $h$ are continuous functions on $\overline{\Omega }$ such that $1<q(x)<p(x)<h(x)<p^{\ast }(x)$ and $p(x)<N$. We show the existence of at least one nontrivial weak solution. Our approach relies on the variable exponent theory of Lebesgue and Sobolev spaces combined with adequate variational methods and the Mountain Pass Theorem.
ISSN:1417-3875
1417-3875