Eigenvalue approximations for linear periodic differential equations with a singularity

We consider the second order, linear differential equation \begin{equation*}y''(x) + (\lambda.q(x)) y(x) = 0 \tag{1}\end{equation*} where $q$ is a real-valued, periodic function with period a. Our object in this paper is to derive asymptotic estimates for the eigenvalues of (1) on $[0;a]$...

Full description

Bibliographic Details
Main Authors: B. J. Harris, F. Marzano
Format: Article
Language:English
Published: University of Szeged 1999-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=16
id doaj-9e6f6a3776854122b916118e9995dc0e
record_format Article
spelling doaj-9e6f6a3776854122b916118e9995dc0e2021-07-14T07:21:17ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38751999-01-011999711810.14232/ejqtde.1999.1.716Eigenvalue approximations for linear periodic differential equations with a singularityB. J. Harris0F. Marzano1Northern Illinois University, DeKalb, Illinois, U.S.A.Edinboro University of Pennsylvania, Edinboro, Pennsylvania, U.S.A.We consider the second order, linear differential equation \begin{equation*}y''(x) + (\lambda.q(x)) y(x) = 0 \tag{1}\end{equation*} where $q$ is a real-valued, periodic function with period a. Our object in this paper is to derive asymptotic estimates for the eigenvalues of (1) on $[0;a]$ with periodic and semi­periodic boundary conditions. Our approach to regularizing (1) follows that used by Atkinson [1], Everitt and Race [4], and Harris and Race [6]. We illustrate our methods by calculating asymptotic estimates for the periodic and semi­periodic eigenvalues of (1) in the case where $q(x) = 1/|1-x|$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=16
collection DOAJ
language English
format Article
sources DOAJ
author B. J. Harris
F. Marzano
spellingShingle B. J. Harris
F. Marzano
Eigenvalue approximations for linear periodic differential equations with a singularity
Electronic Journal of Qualitative Theory of Differential Equations
author_facet B. J. Harris
F. Marzano
author_sort B. J. Harris
title Eigenvalue approximations for linear periodic differential equations with a singularity
title_short Eigenvalue approximations for linear periodic differential equations with a singularity
title_full Eigenvalue approximations for linear periodic differential equations with a singularity
title_fullStr Eigenvalue approximations for linear periodic differential equations with a singularity
title_full_unstemmed Eigenvalue approximations for linear periodic differential equations with a singularity
title_sort eigenvalue approximations for linear periodic differential equations with a singularity
publisher University of Szeged
series Electronic Journal of Qualitative Theory of Differential Equations
issn 1417-3875
1417-3875
publishDate 1999-01-01
description We consider the second order, linear differential equation \begin{equation*}y''(x) + (\lambda.q(x)) y(x) = 0 \tag{1}\end{equation*} where $q$ is a real-valued, periodic function with period a. Our object in this paper is to derive asymptotic estimates for the eigenvalues of (1) on $[0;a]$ with periodic and semi­periodic boundary conditions. Our approach to regularizing (1) follows that used by Atkinson [1], Everitt and Race [4], and Harris and Race [6]. We illustrate our methods by calculating asymptotic estimates for the periodic and semi­periodic eigenvalues of (1) in the case where $q(x) = 1/|1-x|$.
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=16
work_keys_str_mv AT bjharris eigenvalueapproximationsforlinearperiodicdifferentialequationswithasingularity
AT fmarzano eigenvalueapproximationsforlinearperiodicdifferentialequationswithasingularity
_version_ 1721303957469396992