Eigenvalue approximations for linear periodic differential equations with a singularity
We consider the second order, linear differential equation \begin{equation*}y''(x) + (\lambda.q(x)) y(x) = 0 \tag{1}\end{equation*} where $q$ is a real-valued, periodic function with period a. Our object in this paper is to derive asymptotic estimates for the eigenvalues of (1) on $[0;a]$...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
1999-01-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=16 |
id |
doaj-9e6f6a3776854122b916118e9995dc0e |
---|---|
record_format |
Article |
spelling |
doaj-9e6f6a3776854122b916118e9995dc0e2021-07-14T07:21:17ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38751417-38751999-01-011999711810.14232/ejqtde.1999.1.716Eigenvalue approximations for linear periodic differential equations with a singularityB. J. Harris0F. Marzano1Northern Illinois University, DeKalb, Illinois, U.S.A.Edinboro University of Pennsylvania, Edinboro, Pennsylvania, U.S.A.We consider the second order, linear differential equation \begin{equation*}y''(x) + (\lambda.q(x)) y(x) = 0 \tag{1}\end{equation*} where $q$ is a real-valued, periodic function with period a. Our object in this paper is to derive asymptotic estimates for the eigenvalues of (1) on $[0;a]$ with periodic and semiperiodic boundary conditions. Our approach to regularizing (1) follows that used by Atkinson [1], Everitt and Race [4], and Harris and Race [6]. We illustrate our methods by calculating asymptotic estimates for the periodic and semiperiodic eigenvalues of (1) in the case where $q(x) = 1/|1-x|$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=16 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
B. J. Harris F. Marzano |
spellingShingle |
B. J. Harris F. Marzano Eigenvalue approximations for linear periodic differential equations with a singularity Electronic Journal of Qualitative Theory of Differential Equations |
author_facet |
B. J. Harris F. Marzano |
author_sort |
B. J. Harris |
title |
Eigenvalue approximations for linear periodic differential equations with a singularity |
title_short |
Eigenvalue approximations for linear periodic differential equations with a singularity |
title_full |
Eigenvalue approximations for linear periodic differential equations with a singularity |
title_fullStr |
Eigenvalue approximations for linear periodic differential equations with a singularity |
title_full_unstemmed |
Eigenvalue approximations for linear periodic differential equations with a singularity |
title_sort |
eigenvalue approximations for linear periodic differential equations with a singularity |
publisher |
University of Szeged |
series |
Electronic Journal of Qualitative Theory of Differential Equations |
issn |
1417-3875 1417-3875 |
publishDate |
1999-01-01 |
description |
We consider the second order, linear differential equation
\begin{equation*}y''(x) + (\lambda.q(x)) y(x) = 0 \tag{1}\end{equation*}
where $q$ is a real-valued, periodic function with period a. Our object in this paper is to derive asymptotic estimates for the eigenvalues of (1) on $[0;a]$ with periodic and semiperiodic boundary conditions. Our approach to regularizing (1) follows that used by Atkinson [1], Everitt and Race [4], and Harris and Race [6]. We illustrate our methods by calculating asymptotic estimates for the periodic and semiperiodic eigenvalues of (1) in the case where $q(x) = 1/|1-x|$. |
url |
http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=16 |
work_keys_str_mv |
AT bjharris eigenvalueapproximationsforlinearperiodicdifferentialequationswithasingularity AT fmarzano eigenvalueapproximationsforlinearperiodicdifferentialequationswithasingularity |
_version_ |
1721303957469396992 |