Mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography.

Unlike the majority of cancers, survival for lung cancer has not shown much improvement since the early 1970s and survival rates remain low. Genetically engineered mice tumor models are of high translational relevance as we can generate tissue specific mutations which are observed in lung cancer pat...

Full description

Bibliographic Details
Main Authors: Mary Katherine Montgomery, John David, Haikuo Zhang, Sripad Ram, Shibing Deng, Vidya Premkumar, Lisa Manzuk, Ziyue Karen Jiang, Anand Giddabasappa
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0252950
id doaj-9e68815adf6744f5993de637520b8051
record_format Article
spelling doaj-9e68815adf6744f5993de637520b80512021-07-02T04:31:40ZengPublic Library of Science (PLoS)PLoS ONE1932-62032021-01-01166e025295010.1371/journal.pone.0252950Mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography.Mary Katherine MontgomeryJohn DavidHaikuo ZhangSripad RamShibing DengVidya PremkumarLisa ManzukZiyue Karen JiangAnand GiddabasappaUnlike the majority of cancers, survival for lung cancer has not shown much improvement since the early 1970s and survival rates remain low. Genetically engineered mice tumor models are of high translational relevance as we can generate tissue specific mutations which are observed in lung cancer patients. Since these tumors cannot be detected and quantified by traditional methods, we use micro-computed tomography imaging for longitudinal evaluation and to measure response to therapy. Conventionally, we analyze microCT images of lung cancer via a manual segmentation. Manual segmentation is time-consuming and sensitive to intra- and inter-analyst variation. To overcome the limitations of manual segmentation, we set out to develop a fully-automated alternative, the Mouse Lung Automated Segmentation Tool (MLAST). MLAST locates the thoracic region of interest, thresholds and categorizes the lung field into three tissue categories: soft tissue, intermediate, and lung. An increase in the tumor burden was measured by a decrease in lung volume with a simultaneous increase in soft and intermediate tissue quantities. MLAST segmentation was validated against three methods: manual scoring, manual segmentation, and histology. MLAST was applied in an efficacy trial using a Kras/Lkb1 non-small cell lung cancer model and demonstrated adequate precision and sensitivity in quantifying tumor growth inhibition after drug treatment. Implementation of MLAST has considerably accelerated the microCT data analysis, allowing for larger study sizes and mid-study readouts. This study illustrates how automated image analysis tools for large datasets can be used in preclinical imaging to deliver high throughput and quantitative results.https://doi.org/10.1371/journal.pone.0252950
collection DOAJ
language English
format Article
sources DOAJ
author Mary Katherine Montgomery
John David
Haikuo Zhang
Sripad Ram
Shibing Deng
Vidya Premkumar
Lisa Manzuk
Ziyue Karen Jiang
Anand Giddabasappa
spellingShingle Mary Katherine Montgomery
John David
Haikuo Zhang
Sripad Ram
Shibing Deng
Vidya Premkumar
Lisa Manzuk
Ziyue Karen Jiang
Anand Giddabasappa
Mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography.
PLoS ONE
author_facet Mary Katherine Montgomery
John David
Haikuo Zhang
Sripad Ram
Shibing Deng
Vidya Premkumar
Lisa Manzuk
Ziyue Karen Jiang
Anand Giddabasappa
author_sort Mary Katherine Montgomery
title Mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography.
title_short Mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography.
title_full Mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography.
title_fullStr Mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography.
title_full_unstemmed Mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography.
title_sort mouse lung automated segmentation tool for quantifying lung tumors after micro-computed tomography.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2021-01-01
description Unlike the majority of cancers, survival for lung cancer has not shown much improvement since the early 1970s and survival rates remain low. Genetically engineered mice tumor models are of high translational relevance as we can generate tissue specific mutations which are observed in lung cancer patients. Since these tumors cannot be detected and quantified by traditional methods, we use micro-computed tomography imaging for longitudinal evaluation and to measure response to therapy. Conventionally, we analyze microCT images of lung cancer via a manual segmentation. Manual segmentation is time-consuming and sensitive to intra- and inter-analyst variation. To overcome the limitations of manual segmentation, we set out to develop a fully-automated alternative, the Mouse Lung Automated Segmentation Tool (MLAST). MLAST locates the thoracic region of interest, thresholds and categorizes the lung field into three tissue categories: soft tissue, intermediate, and lung. An increase in the tumor burden was measured by a decrease in lung volume with a simultaneous increase in soft and intermediate tissue quantities. MLAST segmentation was validated against three methods: manual scoring, manual segmentation, and histology. MLAST was applied in an efficacy trial using a Kras/Lkb1 non-small cell lung cancer model and demonstrated adequate precision and sensitivity in quantifying tumor growth inhibition after drug treatment. Implementation of MLAST has considerably accelerated the microCT data analysis, allowing for larger study sizes and mid-study readouts. This study illustrates how automated image analysis tools for large datasets can be used in preclinical imaging to deliver high throughput and quantitative results.
url https://doi.org/10.1371/journal.pone.0252950
work_keys_str_mv AT marykatherinemontgomery mouselungautomatedsegmentationtoolforquantifyinglungtumorsaftermicrocomputedtomography
AT johndavid mouselungautomatedsegmentationtoolforquantifyinglungtumorsaftermicrocomputedtomography
AT haikuozhang mouselungautomatedsegmentationtoolforquantifyinglungtumorsaftermicrocomputedtomography
AT sripadram mouselungautomatedsegmentationtoolforquantifyinglungtumorsaftermicrocomputedtomography
AT shibingdeng mouselungautomatedsegmentationtoolforquantifyinglungtumorsaftermicrocomputedtomography
AT vidyapremkumar mouselungautomatedsegmentationtoolforquantifyinglungtumorsaftermicrocomputedtomography
AT lisamanzuk mouselungautomatedsegmentationtoolforquantifyinglungtumorsaftermicrocomputedtomography
AT ziyuekarenjiang mouselungautomatedsegmentationtoolforquantifyinglungtumorsaftermicrocomputedtomography
AT anandgiddabasappa mouselungautomatedsegmentationtoolforquantifyinglungtumorsaftermicrocomputedtomography
_version_ 1721339939743858688