Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte

This study reveals a simple approach to recycle wasted coffee grounds into highly valuable carbon material with superior electrochemical performance. Activated carbon prepared from wasted coffee grounds has been formed via hydrothermal acidic hydrolysis followed by a KOH chemical activation at 800&l...

Full description

Bibliographic Details
Main Authors: Marcin Biegun, Anna Dymerska, Xuecheng Chen, Ewa Mijowska
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/18/3919
id doaj-9e65ab81582b4487ad18ec747f0ba2ab
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Marcin Biegun
Anna Dymerska
Xuecheng Chen
Ewa Mijowska
spellingShingle Marcin Biegun
Anna Dymerska
Xuecheng Chen
Ewa Mijowska
Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte
Materials
biochar
supercapacitor
ionic liquid
author_facet Marcin Biegun
Anna Dymerska
Xuecheng Chen
Ewa Mijowska
author_sort Marcin Biegun
title Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte
title_short Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte
title_full Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte
title_fullStr Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte
title_full_unstemmed Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte
title_sort study of the active carbon from used coffee grounds as the active material for a high-temperature stable supercapacitor with ionic-liquid electrolyte
publisher MDPI AG
series Materials
issn 1996-1944
publishDate 2020-09-01
description This study reveals a simple approach to recycle wasted coffee grounds into highly valuable carbon material with superior electrochemical performance. Activated carbon prepared from wasted coffee grounds has been formed via hydrothermal acidic hydrolysis followed by a KOH chemical activation at 800<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>. To understand the electrochemical properties of the sample, a set of characterization tools has been utilized: N2 and CO2 adsorption–desorption isotherms, thermal gravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy and scanning electron microscopy. The specific surface area obtained from a Brunner–Emmett–Teller (BET) analysis reached <inline-formula><math display="inline"><semantics><mrow><mn>2906</mn><mo>(</mo><mn>19</mn><mo>)</mo></mrow></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula>. Prepared sample (designated as ACG-800KOH) was tested as electrode material in an electric double layer capacitor (EDLC) device with ionic liquid PYR13-TFSI as an electrolyte. The EDLC test was conducted at temperatures ranging from 20 to 120 <inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>. The specific material capacitance reached 178<inline-formula><math display="inline"><semantics><mi mathvariant="normal">F</mi></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula> measured at 20<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula> and 50/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula> and was in the range 182<inline-formula><math display="inline"><semantics><mi mathvariant="normal">F</mi></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula>–285<inline-formula><math display="inline"><semantics><mi mathvariant="normal">F</mi></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula> at the 20<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>–120<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula> temperature range.
topic biochar
supercapacitor
ionic liquid
url https://www.mdpi.com/1996-1944/13/18/3919
work_keys_str_mv AT marcinbiegun studyoftheactivecarbonfromusedcoffeegroundsastheactivematerialforahightemperaturestablesupercapacitorwithionicliquidelectrolyte
AT annadymerska studyoftheactivecarbonfromusedcoffeegroundsastheactivematerialforahightemperaturestablesupercapacitorwithionicliquidelectrolyte
AT xuechengchen studyoftheactivecarbonfromusedcoffeegroundsastheactivematerialforahightemperaturestablesupercapacitorwithionicliquidelectrolyte
AT ewamijowska studyoftheactivecarbonfromusedcoffeegroundsastheactivematerialforahightemperaturestablesupercapacitorwithionicliquidelectrolyte
_version_ 1724607856751149056
spelling doaj-9e65ab81582b4487ad18ec747f0ba2ab2020-11-25T03:23:06ZengMDPI AGMaterials1996-19442020-09-01133919391910.3390/ma13183919Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid ElectrolyteMarcin Biegun0Anna Dymerska1Xuecheng Chen2Ewa Mijowska3Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, PolandFaculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, PolandFaculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, PolandFaculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, PolandThis study reveals a simple approach to recycle wasted coffee grounds into highly valuable carbon material with superior electrochemical performance. Activated carbon prepared from wasted coffee grounds has been formed via hydrothermal acidic hydrolysis followed by a KOH chemical activation at 800<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>. To understand the electrochemical properties of the sample, a set of characterization tools has been utilized: N2 and CO2 adsorption–desorption isotherms, thermal gravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy and scanning electron microscopy. The specific surface area obtained from a Brunner–Emmett–Teller (BET) analysis reached <inline-formula><math display="inline"><semantics><mrow><mn>2906</mn><mo>(</mo><mn>19</mn><mo>)</mo></mrow></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula>. Prepared sample (designated as ACG-800KOH) was tested as electrode material in an electric double layer capacitor (EDLC) device with ionic liquid PYR13-TFSI as an electrolyte. The EDLC test was conducted at temperatures ranging from 20 to 120 <inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>. The specific material capacitance reached 178<inline-formula><math display="inline"><semantics><mi mathvariant="normal">F</mi></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula> measured at 20<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula> and 50/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula> and was in the range 182<inline-formula><math display="inline"><semantics><mi mathvariant="normal">F</mi></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula>–285<inline-formula><math display="inline"><semantics><mi mathvariant="normal">F</mi></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula> at the 20<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>–120<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula> temperature range.https://www.mdpi.com/1996-1944/13/18/3919biocharsupercapacitorionic liquid