Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte
This study reveals a simple approach to recycle wasted coffee grounds into highly valuable carbon material with superior electrochemical performance. Activated carbon prepared from wasted coffee grounds has been formed via hydrothermal acidic hydrolysis followed by a KOH chemical activation at 800&l...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-09-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/13/18/3919 |
id |
doaj-9e65ab81582b4487ad18ec747f0ba2ab |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Marcin Biegun Anna Dymerska Xuecheng Chen Ewa Mijowska |
spellingShingle |
Marcin Biegun Anna Dymerska Xuecheng Chen Ewa Mijowska Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte Materials biochar supercapacitor ionic liquid |
author_facet |
Marcin Biegun Anna Dymerska Xuecheng Chen Ewa Mijowska |
author_sort |
Marcin Biegun |
title |
Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte |
title_short |
Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte |
title_full |
Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte |
title_fullStr |
Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte |
title_full_unstemmed |
Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte |
title_sort |
study of the active carbon from used coffee grounds as the active material for a high-temperature stable supercapacitor with ionic-liquid electrolyte |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2020-09-01 |
description |
This study reveals a simple approach to recycle wasted coffee grounds into highly valuable carbon material with superior electrochemical performance. Activated carbon prepared from wasted coffee grounds has been formed via hydrothermal acidic hydrolysis followed by a KOH chemical activation at 800<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>. To understand the electrochemical properties of the sample, a set of characterization tools has been utilized: N2 and CO2 adsorption–desorption isotherms, thermal gravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy and scanning electron microscopy. The specific surface area obtained from a Brunner–Emmett–Teller (BET) analysis reached <inline-formula><math display="inline"><semantics><mrow><mn>2906</mn><mo>(</mo><mn>19</mn><mo>)</mo></mrow></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula>. Prepared sample (designated as ACG-800KOH) was tested as electrode material in an electric double layer capacitor (EDLC) device with ionic liquid PYR13-TFSI as an electrolyte. The EDLC test was conducted at temperatures ranging from 20 to 120 <inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>. The specific material capacitance reached 178<inline-formula><math display="inline"><semantics><mi mathvariant="normal">F</mi></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula> measured at 20<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula> and 50/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula> and was in the range 182<inline-formula><math display="inline"><semantics><mi mathvariant="normal">F</mi></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula>–285<inline-formula><math display="inline"><semantics><mi mathvariant="normal">F</mi></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula> at the 20<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>–120<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula> temperature range. |
topic |
biochar supercapacitor ionic liquid |
url |
https://www.mdpi.com/1996-1944/13/18/3919 |
work_keys_str_mv |
AT marcinbiegun studyoftheactivecarbonfromusedcoffeegroundsastheactivematerialforahightemperaturestablesupercapacitorwithionicliquidelectrolyte AT annadymerska studyoftheactivecarbonfromusedcoffeegroundsastheactivematerialforahightemperaturestablesupercapacitorwithionicliquidelectrolyte AT xuechengchen studyoftheactivecarbonfromusedcoffeegroundsastheactivematerialforahightemperaturestablesupercapacitorwithionicliquidelectrolyte AT ewamijowska studyoftheactivecarbonfromusedcoffeegroundsastheactivematerialforahightemperaturestablesupercapacitorwithionicliquidelectrolyte |
_version_ |
1724607856751149056 |
spelling |
doaj-9e65ab81582b4487ad18ec747f0ba2ab2020-11-25T03:23:06ZengMDPI AGMaterials1996-19442020-09-01133919391910.3390/ma13183919Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid ElectrolyteMarcin Biegun0Anna Dymerska1Xuecheng Chen2Ewa Mijowska3Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, PolandFaculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, PolandFaculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, PolandFaculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, PolandThis study reveals a simple approach to recycle wasted coffee grounds into highly valuable carbon material with superior electrochemical performance. Activated carbon prepared from wasted coffee grounds has been formed via hydrothermal acidic hydrolysis followed by a KOH chemical activation at 800<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>. To understand the electrochemical properties of the sample, a set of characterization tools has been utilized: N2 and CO2 adsorption–desorption isotherms, thermal gravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy and scanning electron microscopy. The specific surface area obtained from a Brunner–Emmett–Teller (BET) analysis reached <inline-formula><math display="inline"><semantics><mrow><mn>2906</mn><mo>(</mo><mn>19</mn><mo>)</mo></mrow></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><mi mathvariant="normal">m</mi></semantics></math></inline-formula><inline-formula><math display="inline"><semantics><msup><mrow></mrow><mn>2</mn></msup></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula>. Prepared sample (designated as ACG-800KOH) was tested as electrode material in an electric double layer capacitor (EDLC) device with ionic liquid PYR13-TFSI as an electrolyte. The EDLC test was conducted at temperatures ranging from 20 to 120 <inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>. The specific material capacitance reached 178<inline-formula><math display="inline"><semantics><mi mathvariant="normal">F</mi></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula> measured at 20<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula> and 50/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula> and was in the range 182<inline-formula><math display="inline"><semantics><mi mathvariant="normal">F</mi></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula>–285<inline-formula><math display="inline"><semantics><mi mathvariant="normal">F</mi></semantics></math></inline-formula>/<inline-formula><math display="inline"><semantics><mi mathvariant="normal">g</mi></semantics></math></inline-formula> at the 20<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula>–120<inline-formula><math display="inline"><semantics><mrow><msup><mrow></mrow><mo>∘</mo></msup><mi mathvariant="normal">C</mi></mrow></semantics></math></inline-formula> temperature range.https://www.mdpi.com/1996-1944/13/18/3919biocharsupercapacitorionic liquid |