Establishment and Validation of CyberKnife Irradiation in a Syngeneic Glioblastoma Mouse Model

CyberKnife stereotactic radiosurgery (CK-SRS) precisely delivers radiation to intracranial tumors. However, the underlying radiobiological mechanisms at high single doses are not yet fully understood. Here, we established and evaluated the early radiobiological effects of CK-SRS treatment at a singl...

Full description

Bibliographic Details
Main Authors: Claudius Jelgersma, Carolin Senger, Anne Kathrin Kluge, Anastasia Janas, Melina Nieminen-Kelhä, Irina Kremenetskaia, Susanne Mueller, Susan Brandenburg, Franziska Loebel, Ingeborg Tinhofer, Alfredo Conti, Volker Budach, Peter Vajkoczy, Gueliz Acker
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Cancers
Subjects:
Online Access:https://www.mdpi.com/2072-6694/13/14/3416
Description
Summary:CyberKnife stereotactic radiosurgery (CK-SRS) precisely delivers radiation to intracranial tumors. However, the underlying radiobiological mechanisms at high single doses are not yet fully understood. Here, we established and evaluated the early radiobiological effects of CK-SRS treatment at a single dose of 20 Gy after 15 days of tumor growth in a syngeneic glioblastoma-mouse model. Exact positioning was ensured using a custom-made, non-invasive, and trackable frame. One superimposed target volume for the CK-SRS planning was created from the fused tumor volumes obtained from MRIs prior to irradiation. Dose calculation and delivery were planned using a single-reference CT scan. Six days after irradiation, tumor volumes were measured using MRI scans, and radiobiological effects were assessed using immunofluorescence staining. We found that CK-SRS treatment reduced tumor volume by approximately 75%, impaired cell proliferation, diminished tumor vasculature, and increased immune response. The accuracy of the delivered dose was demonstrated by staining of DNA double-strand breaks in accordance with the planned dose distribution. Overall, we confirmed that our proposed setup enables the precise irradiation of intracranial tumors in mice using only one reference CT and superimposed MRI volumes. Thus, our proposed mouse model for reproducible CK-SRS can be used to investigate radiobiological effects and develop novel therapeutic approaches.
ISSN:2072-6694