Nonlinear optimal filter technique for analyzing energy depositions in TES sensors driven into saturation

We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs) connected to quasiparticle (qp) traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search) Ge and Si detectors. We show that this improved model, tog...

Full description

Bibliographic Details
Main Authors: B. Shank, J. J. Yen, B. Cabrera, J. M. Kreikebaum, R. Moffatt, P. Redl, B. A. Young, P. L. Brink, M. Cherry, A. Tomada
Format: Article
Language:English
Published: AIP Publishing LLC 2014-11-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4901291
id doaj-9e5bd63c271f425e87cb60b4b276a300
record_format Article
spelling doaj-9e5bd63c271f425e87cb60b4b276a3002020-11-24T21:04:43ZengAIP Publishing LLCAIP Advances2158-32262014-11-01411117106117106-710.1063/1.4901291007411ADVNonlinear optimal filter technique for analyzing energy depositions in TES sensors driven into saturationB. Shank0J. J. Yen1B. Cabrera2J. M. Kreikebaum3R. Moffatt4P. Redl5B. A. Young6P. L. Brink7M. Cherry8A. Tomada9Dept. of Physics, Stanford University, Stanford, CA 94305, USADept. of Physics, Stanford University, Stanford, CA 94305, USADept. of Physics, Stanford University, Stanford, CA 94305, USADept. of Physics, Stanford University, Stanford, CA 94305, USADept. of Physics, Stanford University, Stanford, CA 94305, USADept. of Physics, Stanford University, Stanford, CA 94305, USADept. of Physics, Santa Clara University, Santa Clara, CA 95053, USASLAC National Accelerator Facility, Menlo Park, CA 94025, USASLAC National Accelerator Facility, Menlo Park, CA 94025, USASLAC National Accelerator Facility, Menlo Park, CA 94025, USA We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs) connected to quasiparticle (qp) traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search) Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution. http://dx.doi.org/10.1063/1.4901291
collection DOAJ
language English
format Article
sources DOAJ
author B. Shank
J. J. Yen
B. Cabrera
J. M. Kreikebaum
R. Moffatt
P. Redl
B. A. Young
P. L. Brink
M. Cherry
A. Tomada
spellingShingle B. Shank
J. J. Yen
B. Cabrera
J. M. Kreikebaum
R. Moffatt
P. Redl
B. A. Young
P. L. Brink
M. Cherry
A. Tomada
Nonlinear optimal filter technique for analyzing energy depositions in TES sensors driven into saturation
AIP Advances
author_facet B. Shank
J. J. Yen
B. Cabrera
J. M. Kreikebaum
R. Moffatt
P. Redl
B. A. Young
P. L. Brink
M. Cherry
A. Tomada
author_sort B. Shank
title Nonlinear optimal filter technique for analyzing energy depositions in TES sensors driven into saturation
title_short Nonlinear optimal filter technique for analyzing energy depositions in TES sensors driven into saturation
title_full Nonlinear optimal filter technique for analyzing energy depositions in TES sensors driven into saturation
title_fullStr Nonlinear optimal filter technique for analyzing energy depositions in TES sensors driven into saturation
title_full_unstemmed Nonlinear optimal filter technique for analyzing energy depositions in TES sensors driven into saturation
title_sort nonlinear optimal filter technique for analyzing energy depositions in tes sensors driven into saturation
publisher AIP Publishing LLC
series AIP Advances
issn 2158-3226
publishDate 2014-11-01
description We present a detailed thermal and electrical model of superconducting transition edge sensors (TESs) connected to quasiparticle (qp) traps, such as the W TESs connected to Al qp traps used for CDMS (Cryogenic Dark Matter Search) Ge and Si detectors. We show that this improved model, together with a straightforward time-domain optimal filter, can be used to analyze pulses well into the nonlinear saturation region and reconstruct absorbed energies with optimal energy resolution.
url http://dx.doi.org/10.1063/1.4901291
work_keys_str_mv AT bshank nonlinearoptimalfiltertechniqueforanalyzingenergydepositionsintessensorsdrivenintosaturation
AT jjyen nonlinearoptimalfiltertechniqueforanalyzingenergydepositionsintessensorsdrivenintosaturation
AT bcabrera nonlinearoptimalfiltertechniqueforanalyzingenergydepositionsintessensorsdrivenintosaturation
AT jmkreikebaum nonlinearoptimalfiltertechniqueforanalyzingenergydepositionsintessensorsdrivenintosaturation
AT rmoffatt nonlinearoptimalfiltertechniqueforanalyzingenergydepositionsintessensorsdrivenintosaturation
AT predl nonlinearoptimalfiltertechniqueforanalyzingenergydepositionsintessensorsdrivenintosaturation
AT bayoung nonlinearoptimalfiltertechniqueforanalyzingenergydepositionsintessensorsdrivenintosaturation
AT plbrink nonlinearoptimalfiltertechniqueforanalyzingenergydepositionsintessensorsdrivenintosaturation
AT mcherry nonlinearoptimalfiltertechniqueforanalyzingenergydepositionsintessensorsdrivenintosaturation
AT atomada nonlinearoptimalfiltertechniqueforanalyzingenergydepositionsintessensorsdrivenintosaturation
_version_ 1716770112410746880