MicroRNA-186-5p serves as a diagnostic biomarker in atherosclerosis and regulates vascular smooth muscle cell proliferation and migration
Abstract Objective MicroRNA dysregulation occurs in many human diseases, including atherosclerosis. Here, we examined the serum expression and clinical significance of miR-186-5p in patients with atherosclerosis, and explored its influence on vascular smooth muscle cell (VSMC) proliferation and migr...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2020-04-01
|
Series: | Cellular & Molecular Biology Letters |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s11658-020-00220-1 |
Summary: | Abstract Objective MicroRNA dysregulation occurs in many human diseases, including atherosclerosis. Here, we examined the serum expression and clinical significance of miR-186-5p in patients with atherosclerosis, and explored its influence on vascular smooth muscle cell (VSMC) proliferation and migration. Methods Blood samples were collected from 104 patients with asymptomatic atherosclerosis and 80 healthy controls. Quantitative real-time PCR was applied to measure the miR-186-5p level. An ROC curve was established to assess the discriminatory ability of the serum miR-186-5p level for identifying atherosclerosis from controls. CCK-8 and Transwell assays were used to evaluate the impact of miR-186-5p on cell behaviors. Results Serum expression of miR-186-5p was significantly higher in atherosclerosis patients than in the control group. The serum miR-186-5p level showed a positive correlation with CIMT and could be used to distinguish atherosclerosis patients from healthy controls, with an area under the curve (AUC) score of 0.891. In VSMCs, overexpression of miR-186-5p significantly promoted cell proliferation and migration, while the opposite results were observed when miR-186-5p was downregulated. Conclusion Overexpression of miR-186-5p has a certain diagnostic significance for atherosclerosis. Upregulation of miR-186-5p stimulates VSMC proliferation and migration. Therefore, it is a possible target for atherosclerosis interventions. |
---|---|
ISSN: | 1425-8153 1689-1392 |