Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach

In this work, we apply Convolutional Neural Networks (CNNs) to detect gravitational wave (GW) signals of compact binary coalescences, using single-interferometer data from real LIGO detectors. Here, we adopted a resampling white-box approach to advance towards a statistical understanding of uncertai...

Full description

Bibliographic Details
Main Authors: Manuel D. Morales, Javier M. Antelis, Claudia Moreno, Alexander I. Nesterov
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/21/9/3174
id doaj-9e268b76283f411785a4d11bbbf49b6d
record_format Article
spelling doaj-9e268b76283f411785a4d11bbbf49b6d2021-05-31T23:06:40ZengMDPI AGSensors1424-82202021-05-01213174317410.3390/s21093174Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box ApproachManuel D. Morales0Javier M. Antelis1Claudia Moreno2Alexander I. Nesterov3Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Av. Revolución 1500, Guadalajara 44430, MexicoTecnologico de Monterrey, School of Engineering and Science, Monterrey, NL 64849, MexicoDepartamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Av. Revolución 1500, Guadalajara 44430, MexicoDepartamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Av. Revolución 1500, Guadalajara 44430, MexicoIn this work, we apply Convolutional Neural Networks (CNNs) to detect gravitational wave (GW) signals of compact binary coalescences, using single-interferometer data from real LIGO detectors. Here, we adopted a resampling white-box approach to advance towards a statistical understanding of uncertainties intrinsic to CNNs in GW data analysis. We used Morlet wavelets to convert strain time series to time-frequency images. Moreover, we only worked with data of non-Gaussian noise and hardware injections, removing freedom to set signal-to-noise ratio (SNR) values in GW templates by hand, in order to reproduce more realistic experimental conditions. After hyperparameter adjustments, we found that resampling through repeated <i>k</i>-fold cross-validation smooths the stochasticity of mini-batch stochastic gradient descent present in accuracy perturbations by a factor of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.6</mn></mrow></semantics></math></inline-formula>. CNNs are quite precise to detect noise, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.952</mn></mrow></semantics></math></inline-formula> for H1 data and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.932</mn></mrow></semantics></math></inline-formula> for L1 data; but, not sensitive enough to recall GW signals, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.858</mn></mrow></semantics></math></inline-formula> for H1 data and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.768</mn></mrow></semantics></math></inline-formula> for L1 data—although recall values are dependent on expected SNR. Our predictions are transparently understood by exploring tthe distribution of probabilistic scores outputted by the softmax layer, and they are strengthened by a receiving operating characteristic analysis and a paired-sample t-test to compare with a random classifier.https://www.mdpi.com/1424-8220/21/9/3174gravitational wavesDeep Learningconvolutional neural networksbinary black holesLIGO detectorsprobabilistic binary classification
collection DOAJ
language English
format Article
sources DOAJ
author Manuel D. Morales
Javier M. Antelis
Claudia Moreno
Alexander I. Nesterov
spellingShingle Manuel D. Morales
Javier M. Antelis
Claudia Moreno
Alexander I. Nesterov
Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach
Sensors
gravitational waves
Deep Learning
convolutional neural networks
binary black holes
LIGO detectors
probabilistic binary classification
author_facet Manuel D. Morales
Javier M. Antelis
Claudia Moreno
Alexander I. Nesterov
author_sort Manuel D. Morales
title Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach
title_short Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach
title_full Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach
title_fullStr Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach
title_full_unstemmed Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach
title_sort deep learning for gravitational-wave data analysis: a resampling white-box approach
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2021-05-01
description In this work, we apply Convolutional Neural Networks (CNNs) to detect gravitational wave (GW) signals of compact binary coalescences, using single-interferometer data from real LIGO detectors. Here, we adopted a resampling white-box approach to advance towards a statistical understanding of uncertainties intrinsic to CNNs in GW data analysis. We used Morlet wavelets to convert strain time series to time-frequency images. Moreover, we only worked with data of non-Gaussian noise and hardware injections, removing freedom to set signal-to-noise ratio (SNR) values in GW templates by hand, in order to reproduce more realistic experimental conditions. After hyperparameter adjustments, we found that resampling through repeated <i>k</i>-fold cross-validation smooths the stochasticity of mini-batch stochastic gradient descent present in accuracy perturbations by a factor of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.6</mn></mrow></semantics></math></inline-formula>. CNNs are quite precise to detect noise, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.952</mn></mrow></semantics></math></inline-formula> for H1 data and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.932</mn></mrow></semantics></math></inline-formula> for L1 data; but, not sensitive enough to recall GW signals, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.858</mn></mrow></semantics></math></inline-formula> for H1 data and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.768</mn></mrow></semantics></math></inline-formula> for L1 data—although recall values are dependent on expected SNR. Our predictions are transparently understood by exploring tthe distribution of probabilistic scores outputted by the softmax layer, and they are strengthened by a receiving operating characteristic analysis and a paired-sample t-test to compare with a random classifier.
topic gravitational waves
Deep Learning
convolutional neural networks
binary black holes
LIGO detectors
probabilistic binary classification
url https://www.mdpi.com/1424-8220/21/9/3174
work_keys_str_mv AT manueldmorales deeplearningforgravitationalwavedataanalysisaresamplingwhiteboxapproach
AT javiermantelis deeplearningforgravitationalwavedataanalysisaresamplingwhiteboxapproach
AT claudiamoreno deeplearningforgravitationalwavedataanalysisaresamplingwhiteboxapproach
AT alexanderinesterov deeplearningforgravitationalwavedataanalysisaresamplingwhiteboxapproach
_version_ 1721418316659032064