Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach
In this work, we apply Convolutional Neural Networks (CNNs) to detect gravitational wave (GW) signals of compact binary coalescences, using single-interferometer data from real LIGO detectors. Here, we adopted a resampling white-box approach to advance towards a statistical understanding of uncertai...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/21/9/3174 |
id |
doaj-9e268b76283f411785a4d11bbbf49b6d |
---|---|
record_format |
Article |
spelling |
doaj-9e268b76283f411785a4d11bbbf49b6d2021-05-31T23:06:40ZengMDPI AGSensors1424-82202021-05-01213174317410.3390/s21093174Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box ApproachManuel D. Morales0Javier M. Antelis1Claudia Moreno2Alexander I. Nesterov3Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Av. Revolución 1500, Guadalajara 44430, MexicoTecnologico de Monterrey, School of Engineering and Science, Monterrey, NL 64849, MexicoDepartamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Av. Revolución 1500, Guadalajara 44430, MexicoDepartamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Av. Revolución 1500, Guadalajara 44430, MexicoIn this work, we apply Convolutional Neural Networks (CNNs) to detect gravitational wave (GW) signals of compact binary coalescences, using single-interferometer data from real LIGO detectors. Here, we adopted a resampling white-box approach to advance towards a statistical understanding of uncertainties intrinsic to CNNs in GW data analysis. We used Morlet wavelets to convert strain time series to time-frequency images. Moreover, we only worked with data of non-Gaussian noise and hardware injections, removing freedom to set signal-to-noise ratio (SNR) values in GW templates by hand, in order to reproduce more realistic experimental conditions. After hyperparameter adjustments, we found that resampling through repeated <i>k</i>-fold cross-validation smooths the stochasticity of mini-batch stochastic gradient descent present in accuracy perturbations by a factor of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.6</mn></mrow></semantics></math></inline-formula>. CNNs are quite precise to detect noise, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.952</mn></mrow></semantics></math></inline-formula> for H1 data and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.932</mn></mrow></semantics></math></inline-formula> for L1 data; but, not sensitive enough to recall GW signals, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.858</mn></mrow></semantics></math></inline-formula> for H1 data and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.768</mn></mrow></semantics></math></inline-formula> for L1 data—although recall values are dependent on expected SNR. Our predictions are transparently understood by exploring tthe distribution of probabilistic scores outputted by the softmax layer, and they are strengthened by a receiving operating characteristic analysis and a paired-sample t-test to compare with a random classifier.https://www.mdpi.com/1424-8220/21/9/3174gravitational wavesDeep Learningconvolutional neural networksbinary black holesLIGO detectorsprobabilistic binary classification |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Manuel D. Morales Javier M. Antelis Claudia Moreno Alexander I. Nesterov |
spellingShingle |
Manuel D. Morales Javier M. Antelis Claudia Moreno Alexander I. Nesterov Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach Sensors gravitational waves Deep Learning convolutional neural networks binary black holes LIGO detectors probabilistic binary classification |
author_facet |
Manuel D. Morales Javier M. Antelis Claudia Moreno Alexander I. Nesterov |
author_sort |
Manuel D. Morales |
title |
Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach |
title_short |
Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach |
title_full |
Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach |
title_fullStr |
Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach |
title_full_unstemmed |
Deep Learning for Gravitational-Wave Data Analysis: A Resampling White-Box Approach |
title_sort |
deep learning for gravitational-wave data analysis: a resampling white-box approach |
publisher |
MDPI AG |
series |
Sensors |
issn |
1424-8220 |
publishDate |
2021-05-01 |
description |
In this work, we apply Convolutional Neural Networks (CNNs) to detect gravitational wave (GW) signals of compact binary coalescences, using single-interferometer data from real LIGO detectors. Here, we adopted a resampling white-box approach to advance towards a statistical understanding of uncertainties intrinsic to CNNs in GW data analysis. We used Morlet wavelets to convert strain time series to time-frequency images. Moreover, we only worked with data of non-Gaussian noise and hardware injections, removing freedom to set signal-to-noise ratio (SNR) values in GW templates by hand, in order to reproduce more realistic experimental conditions. After hyperparameter adjustments, we found that resampling through repeated <i>k</i>-fold cross-validation smooths the stochasticity of mini-batch stochastic gradient descent present in accuracy perturbations by a factor of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>3.6</mn></mrow></semantics></math></inline-formula>. CNNs are quite precise to detect noise, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.952</mn></mrow></semantics></math></inline-formula> for H1 data and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.932</mn></mrow></semantics></math></inline-formula> for L1 data; but, not sensitive enough to recall GW signals, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.858</mn></mrow></semantics></math></inline-formula> for H1 data and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>0.768</mn></mrow></semantics></math></inline-formula> for L1 data—although recall values are dependent on expected SNR. Our predictions are transparently understood by exploring tthe distribution of probabilistic scores outputted by the softmax layer, and they are strengthened by a receiving operating characteristic analysis and a paired-sample t-test to compare with a random classifier. |
topic |
gravitational waves Deep Learning convolutional neural networks binary black holes LIGO detectors probabilistic binary classification |
url |
https://www.mdpi.com/1424-8220/21/9/3174 |
work_keys_str_mv |
AT manueldmorales deeplearningforgravitationalwavedataanalysisaresamplingwhiteboxapproach AT javiermantelis deeplearningforgravitationalwavedataanalysisaresamplingwhiteboxapproach AT claudiamoreno deeplearningforgravitationalwavedataanalysisaresamplingwhiteboxapproach AT alexanderinesterov deeplearningforgravitationalwavedataanalysisaresamplingwhiteboxapproach |
_version_ |
1721418316659032064 |