Molecular evolution of pathogenic bacteria based on rrsA gene
Evolution of pathogens in prokaryotic bacteria was studied by 16srRNA genes. In this study rrsA genes of 45 bacteria were considered, which includes pathogens, non-pathogens and out-group bacteria. We considered non-pathogenic bacteria, for each class in bacterial classification, to support the path...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Deccan College of Medical Sciences
2012-01-01
|
Series: | Journal of Medical and Allied Sciences |
Subjects: | |
Online Access: | http://www.jmas.in/Vol2Issue1/Molecular%20evolution%20of%20pathogenic%20bacteria%20based%20on%20rrsA%20gene.pdf |
id |
doaj-9deadecc2a6d438eac722893ce11c592 |
---|---|
record_format |
Article |
spelling |
doaj-9deadecc2a6d438eac722893ce11c5922020-11-24T21:23:40ZengDeccan College of Medical SciencesJournal of Medical and Allied Sciences2231-16962231-170X2012-01-01211218Molecular evolution of pathogenic bacteria based on rrsA geneAravind SettiT A Phazna DeviSmita C PawarG RajeshS SrikanthS KalyanEvolution of pathogens in prokaryotic bacteria was studied by 16srRNA genes. In this study rrsA genes of 45 bacteria were considered, which includes pathogens, non-pathogens and out-group bacteria. We considered non-pathogenic bacteria, for each class in bacterial classification, to support the pathogenic evolution. In this investigation, aligned nucleotide sequences of rrsA genes were used for Phylogenetic analysis and they have been clustered precisely. Maximum Likelihood (ML) and Maximum Parsimony (MP) methods were employed for the molecular evolution of pathogenic bacteria. The best-fit substitution model with the lowest Bayesian Information Criterion scores is considered to describe the substitution pattern the best, and non-uniformity of evolutionary rates among sites were modeled by using a discrete Gamma distribution. Nearest Neighbor Interchange (NNI) heuristic method was used to generate the tree for ML and Close Neighbor Interchange (CNI) on random trees search methods for MP. Further both the phylogenetic trees were statistically evaluated for accuracy by bootstrap value. Transition and transversion ratio of the rrsA genes have been estimated for the mutation frequency over the evolution by Maximum Composite Likelihood (MCL) bias and ML bias. Combined pathogenic and non pathogenic bacteria analysis reflected the clear diversity of bacteria over time and agrees with morphological and cytological data. These molecular evolution results should be useful to study the evolution pattern of pathogenic bacteria.http://www.jmas.in/Vol2Issue1/Molecular%20evolution%20of%20pathogenic%20bacteria%20based%20on%20rrsA%20gene.pdfPhylogenyMaximum Likelihood (ML)Maximum Parsimony (MP)rrsA geneTransition transversion biasRibotyping |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Aravind Setti T A Phazna Devi Smita C Pawar G Rajesh S Srikanth S Kalyan |
spellingShingle |
Aravind Setti T A Phazna Devi Smita C Pawar G Rajesh S Srikanth S Kalyan Molecular evolution of pathogenic bacteria based on rrsA gene Journal of Medical and Allied Sciences Phylogeny Maximum Likelihood (ML) Maximum Parsimony (MP) rrsA gene Transition transversion bias Ribotyping |
author_facet |
Aravind Setti T A Phazna Devi Smita C Pawar G Rajesh S Srikanth S Kalyan |
author_sort |
Aravind Setti |
title |
Molecular evolution of pathogenic bacteria based on rrsA gene |
title_short |
Molecular evolution of pathogenic bacteria based on rrsA gene |
title_full |
Molecular evolution of pathogenic bacteria based on rrsA gene |
title_fullStr |
Molecular evolution of pathogenic bacteria based on rrsA gene |
title_full_unstemmed |
Molecular evolution of pathogenic bacteria based on rrsA gene |
title_sort |
molecular evolution of pathogenic bacteria based on rrsa gene |
publisher |
Deccan College of Medical Sciences |
series |
Journal of Medical and Allied Sciences |
issn |
2231-1696 2231-170X |
publishDate |
2012-01-01 |
description |
Evolution of pathogens in prokaryotic bacteria was studied by 16srRNA genes. In this study rrsA genes of 45 bacteria were considered, which includes pathogens, non-pathogens and out-group bacteria. We considered non-pathogenic bacteria, for each class in bacterial classification, to support the pathogenic evolution. In this investigation, aligned nucleotide sequences of rrsA genes were used for Phylogenetic analysis and they have been clustered precisely. Maximum Likelihood (ML) and Maximum Parsimony (MP) methods were employed for the molecular evolution of pathogenic bacteria. The best-fit substitution model with the lowest Bayesian Information Criterion scores is considered to describe the substitution pattern the best, and non-uniformity of evolutionary rates among sites were modeled by using a discrete Gamma distribution. Nearest Neighbor Interchange (NNI) heuristic method was used to generate the tree for ML and Close Neighbor Interchange (CNI) on random trees search methods for MP. Further both the phylogenetic trees were statistically evaluated for accuracy by bootstrap value. Transition and transversion ratio of the rrsA genes have been estimated for the mutation frequency over the evolution by Maximum Composite Likelihood (MCL) bias and ML bias. Combined pathogenic and non pathogenic bacteria analysis reflected the clear diversity of bacteria over time and agrees with morphological and cytological data. These molecular evolution results should be useful to study the evolution pattern of pathogenic bacteria. |
topic |
Phylogeny Maximum Likelihood (ML) Maximum Parsimony (MP) rrsA gene Transition transversion bias Ribotyping |
url |
http://www.jmas.in/Vol2Issue1/Molecular%20evolution%20of%20pathogenic%20bacteria%20based%20on%20rrsA%20gene.pdf |
work_keys_str_mv |
AT aravindsetti molecularevolutionofpathogenicbacteriabasedonrrsagene AT taphaznadevi molecularevolutionofpathogenicbacteriabasedonrrsagene AT smitacpawar molecularevolutionofpathogenicbacteriabasedonrrsagene AT grajesh molecularevolutionofpathogenicbacteriabasedonrrsagene AT ssrikanth molecularevolutionofpathogenicbacteriabasedonrrsagene AT skalyan molecularevolutionofpathogenicbacteriabasedonrrsagene |
_version_ |
1725991819516313600 |