Local and global existence for the Lagrangian Averaged Navier-Stokes equations in Besov spaces

Through the use of a non-standard Leibntiz rule estimate, we prove the existence of unique short time solutions to the incompressible, iso-tropic Lagrangian Averaged Navier-Stokes equation with initial data in the Besov space $B^{r}_{p,q}(mathbb{R}^n)$, $r>0$, for $p>n$ and $ngeq 3$. When...

Full description

Bibliographic Details
Main Author: Nathan Pennington
Format: Article
Language:English
Published: Texas State University 2012-06-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2012/89/abstr.html

Similar Items