High-Selectivity Filter Banks for Spectral Analysis of Music Signals
<p/> <p>This paper approaches, under a unified framework, several algorithms for the spectral analysis of musical signals. Such algorithms include the fast Fourier transform (FFT), the fast filter bank (FFB), the constant- <inline-formula><graphic file="1687-6180-2007-09470...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2007-01-01
|
Series: | EURASIP Journal on Advances in Signal Processing |
Online Access: | http://asp.eurasipjournals.com/content/2007/094704 |
id |
doaj-9dc58916b7c14f74b630e7f720085edf |
---|---|
record_format |
Article |
spelling |
doaj-9dc58916b7c14f74b630e7f720085edf2020-11-25T00:24:17ZengSpringerOpenEURASIP Journal on Advances in Signal Processing1687-61721687-61802007-01-0120071094704High-Selectivity Filter Banks for Spectral Analysis of Music SignalsDiniz Filipe CCBKothe IuriNetto Sergio LBiscainho Luiz WP<p/> <p>This paper approaches, under a unified framework, several algorithms for the spectral analysis of musical signals. Such algorithms include the fast Fourier transform (FFT), the fast filter bank (FFB), the constant- <inline-formula><graphic file="1687-6180-2007-094704-i1.gif"/></inline-formula> transform (C <inline-formula><graphic file="1687-6180-2007-094704-i2.gif"/></inline-formula>T), and the bounded- <inline-formula><graphic file="1687-6180-2007-094704-i3.gif"/></inline-formula> transform (B <inline-formula><graphic file="1687-6180-2007-094704-i4.gif"/></inline-formula>T), previously known from the associated literature. Two new methods are then introduced, namely, the constant- <inline-formula><graphic file="1687-6180-2007-094704-i5.gif"/></inline-formula> fast filter bank (C <inline-formula><graphic file="1687-6180-2007-094704-i6.gif"/></inline-formula>FFB) and the bounded- <inline-formula><graphic file="1687-6180-2007-094704-i7.gif"/></inline-formula> fast filter bank (B <inline-formula><graphic file="1687-6180-2007-094704-i8.gif"/></inline-formula>FFB), combining the positive characteristics of the previously mentioned algorithms. The provided analyses indicate that the proposed B <inline-formula><graphic file="1687-6180-2007-094704-i9.gif"/></inline-formula>FFB achieves an excellent compromise between the reduced computational effort of the FFT, the high selectivity of each output channel of the FFB, and the efficient distribution of frequency channels associated to the C <inline-formula><graphic file="1687-6180-2007-094704-i10.gif"/></inline-formula>T and B <inline-formula><graphic file="1687-6180-2007-094704-i11.gif"/></inline-formula>T methods. Examples are included to illustrate the performances of these methods in the spectral analysis of music signals.</p> http://asp.eurasipjournals.com/content/2007/094704 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Diniz Filipe CCB Kothe Iuri Netto Sergio L Biscainho Luiz WP |
spellingShingle |
Diniz Filipe CCB Kothe Iuri Netto Sergio L Biscainho Luiz WP High-Selectivity Filter Banks for Spectral Analysis of Music Signals EURASIP Journal on Advances in Signal Processing |
author_facet |
Diniz Filipe CCB Kothe Iuri Netto Sergio L Biscainho Luiz WP |
author_sort |
Diniz Filipe CCB |
title |
High-Selectivity Filter Banks for Spectral Analysis of Music Signals |
title_short |
High-Selectivity Filter Banks for Spectral Analysis of Music Signals |
title_full |
High-Selectivity Filter Banks for Spectral Analysis of Music Signals |
title_fullStr |
High-Selectivity Filter Banks for Spectral Analysis of Music Signals |
title_full_unstemmed |
High-Selectivity Filter Banks for Spectral Analysis of Music Signals |
title_sort |
high-selectivity filter banks for spectral analysis of music signals |
publisher |
SpringerOpen |
series |
EURASIP Journal on Advances in Signal Processing |
issn |
1687-6172 1687-6180 |
publishDate |
2007-01-01 |
description |
<p/> <p>This paper approaches, under a unified framework, several algorithms for the spectral analysis of musical signals. Such algorithms include the fast Fourier transform (FFT), the fast filter bank (FFB), the constant- <inline-formula><graphic file="1687-6180-2007-094704-i1.gif"/></inline-formula> transform (C <inline-formula><graphic file="1687-6180-2007-094704-i2.gif"/></inline-formula>T), and the bounded- <inline-formula><graphic file="1687-6180-2007-094704-i3.gif"/></inline-formula> transform (B <inline-formula><graphic file="1687-6180-2007-094704-i4.gif"/></inline-formula>T), previously known from the associated literature. Two new methods are then introduced, namely, the constant- <inline-formula><graphic file="1687-6180-2007-094704-i5.gif"/></inline-formula> fast filter bank (C <inline-formula><graphic file="1687-6180-2007-094704-i6.gif"/></inline-formula>FFB) and the bounded- <inline-formula><graphic file="1687-6180-2007-094704-i7.gif"/></inline-formula> fast filter bank (B <inline-formula><graphic file="1687-6180-2007-094704-i8.gif"/></inline-formula>FFB), combining the positive characteristics of the previously mentioned algorithms. The provided analyses indicate that the proposed B <inline-formula><graphic file="1687-6180-2007-094704-i9.gif"/></inline-formula>FFB achieves an excellent compromise between the reduced computational effort of the FFT, the high selectivity of each output channel of the FFB, and the efficient distribution of frequency channels associated to the C <inline-formula><graphic file="1687-6180-2007-094704-i10.gif"/></inline-formula>T and B <inline-formula><graphic file="1687-6180-2007-094704-i11.gif"/></inline-formula>T methods. Examples are included to illustrate the performances of these methods in the spectral analysis of music signals.</p> |
url |
http://asp.eurasipjournals.com/content/2007/094704 |
work_keys_str_mv |
AT dinizfilipeccb highselectivityfilterbanksforspectralanalysisofmusicsignals AT kotheiuri highselectivityfilterbanksforspectralanalysisofmusicsignals AT nettosergiol highselectivityfilterbanksforspectralanalysisofmusicsignals AT biscainholuizwp highselectivityfilterbanksforspectralanalysisofmusicsignals |
_version_ |
1725352921586991104 |