High-Selectivity Filter Banks for Spectral Analysis of Music Signals

<p/> <p>This paper approaches, under a unified framework, several algorithms for the spectral analysis of musical signals. Such algorithms include the fast Fourier transform (FFT), the fast filter bank (FFB), the constant- <inline-formula><graphic file="1687-6180-2007-09470...

Full description

Bibliographic Details
Main Authors: Diniz Filipe CCB, Kothe Iuri, Netto Sergio L, Biscainho Luiz WP
Format: Article
Language:English
Published: SpringerOpen 2007-01-01
Series:EURASIP Journal on Advances in Signal Processing
Online Access:http://asp.eurasipjournals.com/content/2007/094704
id doaj-9dc58916b7c14f74b630e7f720085edf
record_format Article
spelling doaj-9dc58916b7c14f74b630e7f720085edf2020-11-25T00:24:17ZengSpringerOpenEURASIP Journal on Advances in Signal Processing1687-61721687-61802007-01-0120071094704High-Selectivity Filter Banks for Spectral Analysis of Music SignalsDiniz Filipe CCBKothe IuriNetto Sergio LBiscainho Luiz WP<p/> <p>This paper approaches, under a unified framework, several algorithms for the spectral analysis of musical signals. Such algorithms include the fast Fourier transform (FFT), the fast filter bank (FFB), the constant- <inline-formula><graphic file="1687-6180-2007-094704-i1.gif"/></inline-formula> transform (C <inline-formula><graphic file="1687-6180-2007-094704-i2.gif"/></inline-formula>T), and the bounded- <inline-formula><graphic file="1687-6180-2007-094704-i3.gif"/></inline-formula> transform (B <inline-formula><graphic file="1687-6180-2007-094704-i4.gif"/></inline-formula>T), previously known from the associated literature. Two new methods are then introduced, namely, the constant- <inline-formula><graphic file="1687-6180-2007-094704-i5.gif"/></inline-formula> fast filter bank (C <inline-formula><graphic file="1687-6180-2007-094704-i6.gif"/></inline-formula>FFB) and the bounded- <inline-formula><graphic file="1687-6180-2007-094704-i7.gif"/></inline-formula> fast filter bank (B <inline-formula><graphic file="1687-6180-2007-094704-i8.gif"/></inline-formula>FFB), combining the positive characteristics of the previously mentioned algorithms. The provided analyses indicate that the proposed B <inline-formula><graphic file="1687-6180-2007-094704-i9.gif"/></inline-formula>FFB achieves an excellent compromise between the reduced computational effort of the FFT, the high selectivity of each output channel of the FFB, and the efficient distribution of frequency channels associated to the C <inline-formula><graphic file="1687-6180-2007-094704-i10.gif"/></inline-formula>T and B <inline-formula><graphic file="1687-6180-2007-094704-i11.gif"/></inline-formula>T methods. Examples are included to illustrate the performances of these methods in the spectral analysis of music signals.</p> http://asp.eurasipjournals.com/content/2007/094704
collection DOAJ
language English
format Article
sources DOAJ
author Diniz Filipe CCB
Kothe Iuri
Netto Sergio L
Biscainho Luiz WP
spellingShingle Diniz Filipe CCB
Kothe Iuri
Netto Sergio L
Biscainho Luiz WP
High-Selectivity Filter Banks for Spectral Analysis of Music Signals
EURASIP Journal on Advances in Signal Processing
author_facet Diniz Filipe CCB
Kothe Iuri
Netto Sergio L
Biscainho Luiz WP
author_sort Diniz Filipe CCB
title High-Selectivity Filter Banks for Spectral Analysis of Music Signals
title_short High-Selectivity Filter Banks for Spectral Analysis of Music Signals
title_full High-Selectivity Filter Banks for Spectral Analysis of Music Signals
title_fullStr High-Selectivity Filter Banks for Spectral Analysis of Music Signals
title_full_unstemmed High-Selectivity Filter Banks for Spectral Analysis of Music Signals
title_sort high-selectivity filter banks for spectral analysis of music signals
publisher SpringerOpen
series EURASIP Journal on Advances in Signal Processing
issn 1687-6172
1687-6180
publishDate 2007-01-01
description <p/> <p>This paper approaches, under a unified framework, several algorithms for the spectral analysis of musical signals. Such algorithms include the fast Fourier transform (FFT), the fast filter bank (FFB), the constant- <inline-formula><graphic file="1687-6180-2007-094704-i1.gif"/></inline-formula> transform (C <inline-formula><graphic file="1687-6180-2007-094704-i2.gif"/></inline-formula>T), and the bounded- <inline-formula><graphic file="1687-6180-2007-094704-i3.gif"/></inline-formula> transform (B <inline-formula><graphic file="1687-6180-2007-094704-i4.gif"/></inline-formula>T), previously known from the associated literature. Two new methods are then introduced, namely, the constant- <inline-formula><graphic file="1687-6180-2007-094704-i5.gif"/></inline-formula> fast filter bank (C <inline-formula><graphic file="1687-6180-2007-094704-i6.gif"/></inline-formula>FFB) and the bounded- <inline-formula><graphic file="1687-6180-2007-094704-i7.gif"/></inline-formula> fast filter bank (B <inline-formula><graphic file="1687-6180-2007-094704-i8.gif"/></inline-formula>FFB), combining the positive characteristics of the previously mentioned algorithms. The provided analyses indicate that the proposed B <inline-formula><graphic file="1687-6180-2007-094704-i9.gif"/></inline-formula>FFB achieves an excellent compromise between the reduced computational effort of the FFT, the high selectivity of each output channel of the FFB, and the efficient distribution of frequency channels associated to the C <inline-formula><graphic file="1687-6180-2007-094704-i10.gif"/></inline-formula>T and B <inline-formula><graphic file="1687-6180-2007-094704-i11.gif"/></inline-formula>T methods. Examples are included to illustrate the performances of these methods in the spectral analysis of music signals.</p>
url http://asp.eurasipjournals.com/content/2007/094704
work_keys_str_mv AT dinizfilipeccb highselectivityfilterbanksforspectralanalysisofmusicsignals
AT kotheiuri highselectivityfilterbanksforspectralanalysisofmusicsignals
AT nettosergiol highselectivityfilterbanksforspectralanalysisofmusicsignals
AT biscainholuizwp highselectivityfilterbanksforspectralanalysisofmusicsignals
_version_ 1725352921586991104