The GlyT1 Inhibitor Bitopertin Ameliorates Allodynia and Hyperalgesia in Animal Models of Neuropathic and Inflammatory Pain
Background: Chronic pain conditions are difficult to treat and the therapeutic outcome is frequently unsatisfactory. Changes in excitation/inhibition balance within the dorsal horn contribute to the establishment and persistence of chronic pain. Thus, facilitation of inhibitory neurotransmission is...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2018-01-01
|
Series: | Frontiers in Molecular Neuroscience |
Subjects: | |
Online Access: | http://journal.frontiersin.org/article/10.3389/fnmol.2017.00438/full |
id |
doaj-9dc45ce6d657441bb3e22aba84f3247e |
---|---|
record_format |
Article |
spelling |
doaj-9dc45ce6d657441bb3e22aba84f3247e2020-11-24T22:35:56ZengFrontiers Media S.A.Frontiers in Molecular Neuroscience1662-50992018-01-011010.3389/fnmol.2017.00438313047The GlyT1 Inhibitor Bitopertin Ameliorates Allodynia and Hyperalgesia in Animal Models of Neuropathic and Inflammatory PainAnja Armbruster0Elena Neumann1Valentin Kötter2Henning Hermanns3Robert Werdehausen4Volker Eulenburg5Institute of Biochemistry, Emil-Fischer-Center, University of Erlangen-Nuremberg, Erlangen, GermanyDepartment of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, GermanyDepartment of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, GermanyDepartment of Anesthesiology, Academic Medical Center, Amsterdam, NetherlandsDepartment of Anesthesiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, GermanyInstitute of Biochemistry, Emil-Fischer-Center, University of Erlangen-Nuremberg, Erlangen, GermanyBackground: Chronic pain conditions are difficult to treat and the therapeutic outcome is frequently unsatisfactory. Changes in excitation/inhibition balance within the dorsal horn contribute to the establishment and persistence of chronic pain. Thus, facilitation of inhibitory neurotransmission is a promising approach to treat chronic pain pharmacologically. Glycine transporter 1 (GlyT1) plays an important role in regulating extracellular glycine concentrations. Aim of the present study therefore was to investigate whether the specific GlyT1 inhibitor bitopertin (RG1678; RO4917838) might constitute a novel treatment for chronic pain by facilitating glycinergic inhibition.Methods: Mechanical allodynia and thermal hyperalgesia were induced by chronic constriction injury of the sciatic nerve or carrageenan injections into the plantar surface of the hind paw in rodents. The effect of acute and long-term bitopertin application on the reaction threshold to mechanical and thermal stimuli was determined. General activity was determined in open field experiments. The glycine concentration in cerebrospinal fluid and blood was measured by HPLC.Results: Systemic application of bitopertin in chronic pain conditions lead to a significant increase of the reaction thresholds to mechanical and thermal stimuli in a time and dose-dependent manner. Long-term application of bitopertin effectuated stable beneficial effects over 4 weeks. Bitopertin did not alter reaction thresholds to stimuli in control animals and had no effect on general locomotor activity and anxiety but lead to an increased glycine concentration in cerebrospinal fluid.Conclusion: These findings suggest that inhibition of the GlyT1 by bitopertin represents a promising new approach for the treatment of chronic pain.http://journal.frontiersin.org/article/10.3389/fnmol.2017.00438/fullneuropathic painbitopertinglycine transporterglycinergic inhibition |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Anja Armbruster Elena Neumann Valentin Kötter Henning Hermanns Robert Werdehausen Volker Eulenburg |
spellingShingle |
Anja Armbruster Elena Neumann Valentin Kötter Henning Hermanns Robert Werdehausen Volker Eulenburg The GlyT1 Inhibitor Bitopertin Ameliorates Allodynia and Hyperalgesia in Animal Models of Neuropathic and Inflammatory Pain Frontiers in Molecular Neuroscience neuropathic pain bitopertin glycine transporter glycinergic inhibition |
author_facet |
Anja Armbruster Elena Neumann Valentin Kötter Henning Hermanns Robert Werdehausen Volker Eulenburg |
author_sort |
Anja Armbruster |
title |
The GlyT1 Inhibitor Bitopertin Ameliorates Allodynia and Hyperalgesia in Animal Models of Neuropathic and Inflammatory Pain |
title_short |
The GlyT1 Inhibitor Bitopertin Ameliorates Allodynia and Hyperalgesia in Animal Models of Neuropathic and Inflammatory Pain |
title_full |
The GlyT1 Inhibitor Bitopertin Ameliorates Allodynia and Hyperalgesia in Animal Models of Neuropathic and Inflammatory Pain |
title_fullStr |
The GlyT1 Inhibitor Bitopertin Ameliorates Allodynia and Hyperalgesia in Animal Models of Neuropathic and Inflammatory Pain |
title_full_unstemmed |
The GlyT1 Inhibitor Bitopertin Ameliorates Allodynia and Hyperalgesia in Animal Models of Neuropathic and Inflammatory Pain |
title_sort |
glyt1 inhibitor bitopertin ameliorates allodynia and hyperalgesia in animal models of neuropathic and inflammatory pain |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Molecular Neuroscience |
issn |
1662-5099 |
publishDate |
2018-01-01 |
description |
Background: Chronic pain conditions are difficult to treat and the therapeutic outcome is frequently unsatisfactory. Changes in excitation/inhibition balance within the dorsal horn contribute to the establishment and persistence of chronic pain. Thus, facilitation of inhibitory neurotransmission is a promising approach to treat chronic pain pharmacologically. Glycine transporter 1 (GlyT1) plays an important role in regulating extracellular glycine concentrations. Aim of the present study therefore was to investigate whether the specific GlyT1 inhibitor bitopertin (RG1678; RO4917838) might constitute a novel treatment for chronic pain by facilitating glycinergic inhibition.Methods: Mechanical allodynia and thermal hyperalgesia were induced by chronic constriction injury of the sciatic nerve or carrageenan injections into the plantar surface of the hind paw in rodents. The effect of acute and long-term bitopertin application on the reaction threshold to mechanical and thermal stimuli was determined. General activity was determined in open field experiments. The glycine concentration in cerebrospinal fluid and blood was measured by HPLC.Results: Systemic application of bitopertin in chronic pain conditions lead to a significant increase of the reaction thresholds to mechanical and thermal stimuli in a time and dose-dependent manner. Long-term application of bitopertin effectuated stable beneficial effects over 4 weeks. Bitopertin did not alter reaction thresholds to stimuli in control animals and had no effect on general locomotor activity and anxiety but lead to an increased glycine concentration in cerebrospinal fluid.Conclusion: These findings suggest that inhibition of the GlyT1 by bitopertin represents a promising new approach for the treatment of chronic pain. |
topic |
neuropathic pain bitopertin glycine transporter glycinergic inhibition |
url |
http://journal.frontiersin.org/article/10.3389/fnmol.2017.00438/full |
work_keys_str_mv |
AT anjaarmbruster theglyt1inhibitorbitopertinamelioratesallodyniaandhyperalgesiainanimalmodelsofneuropathicandinflammatorypain AT elenaneumann theglyt1inhibitorbitopertinamelioratesallodyniaandhyperalgesiainanimalmodelsofneuropathicandinflammatorypain AT valentinkotter theglyt1inhibitorbitopertinamelioratesallodyniaandhyperalgesiainanimalmodelsofneuropathicandinflammatorypain AT henninghermanns theglyt1inhibitorbitopertinamelioratesallodyniaandhyperalgesiainanimalmodelsofneuropathicandinflammatorypain AT robertwerdehausen theglyt1inhibitorbitopertinamelioratesallodyniaandhyperalgesiainanimalmodelsofneuropathicandinflammatorypain AT volkereulenburg theglyt1inhibitorbitopertinamelioratesallodyniaandhyperalgesiainanimalmodelsofneuropathicandinflammatorypain AT anjaarmbruster glyt1inhibitorbitopertinamelioratesallodyniaandhyperalgesiainanimalmodelsofneuropathicandinflammatorypain AT elenaneumann glyt1inhibitorbitopertinamelioratesallodyniaandhyperalgesiainanimalmodelsofneuropathicandinflammatorypain AT valentinkotter glyt1inhibitorbitopertinamelioratesallodyniaandhyperalgesiainanimalmodelsofneuropathicandinflammatorypain AT henninghermanns glyt1inhibitorbitopertinamelioratesallodyniaandhyperalgesiainanimalmodelsofneuropathicandinflammatorypain AT robertwerdehausen glyt1inhibitorbitopertinamelioratesallodyniaandhyperalgesiainanimalmodelsofneuropathicandinflammatorypain AT volkereulenburg glyt1inhibitorbitopertinamelioratesallodyniaandhyperalgesiainanimalmodelsofneuropathicandinflammatorypain |
_version_ |
1725722090502356992 |